2022 Consumer Confidence Report

Water System Information

Water System Name: Skywalker Ranch

Report Date: 5/22/23

Type of Water Source(s) in Use: Ground Water

Name and General Location of Source(s): Deep rock wells # 1, 3, 5, 6, 7, 8, 9, 10 located in the surrounding hills on company owned property

Drinking Water Source Assessment Information: An assessment was performed on 12/2002. The results are on file in the Ranch Managers' office. All sources of water were determined to be most vulnerable to cattle grazing. The highest risk associated with cattle grazing is the possibility of microbial contamination. The raw water in the Main House and Farm Group systems is treated with ozone, chlorine, and is softened. The raw water in the Big Rock Ranch system is treated with chlorine and is softened. All wells are classified as non-vulnerable to organic chemical contamination.

Time and Place of Regularly Scheduled Board Meetings for Public Participation: None

For More Information, Contact: Lou Bouc (415) 662-1733

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2022 and may include earlier monitoring data.

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Skywalker Ranch a 5858 Lucas Valley Road, Nicasio CA, 94946 para asistirlo en español.

Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Skywalker Ranch 以获得中文的帮助: 5858 Lucas Valley Road, Nicasio CA, 94946

Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa Skywalker Ranch, 5858 Lucas Valley Road, Nicasio CA o tumawag sa 415-662-1733 para matulungan sa wikang Tagalog.

Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ Skywalker Ranch tại 5858 Lucas Valley Road, Nicasio CA, 94946 để được hỗ trợ giúp bằng tiếng Việt.

Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau Skywalker Ranch ntawm 5858 Lucas Valley Road, Nicasio CA, 94946 rau kev pab hauv lus Askiv.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)

Term	Definition
ppt	parts per trillion or nanograms per liter (ng/L)
ppq	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do

not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Complete if bacteria are detected.

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	(In the year) 0	0	(a)	0	Human and animal fecal waste

⁽a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 2. Sampling Results Showing the Detection of Lead and Copper

Complete if lead or copper is detected in the last sample set.

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb)	9-18-2020	5	0.007	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	9-18-2020	5	0.175	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

 Table 3. Sampling Results for Sodium and Hardness

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)						

Farm Group (Raw)	6-10-09	18 ppm	18	None	None	Salt present in the
Well #3	11-17-10	24 ppm	24	None	None	water and is generally
Well # 5	11-17-10	14 ppm	14	None	None	naturally occurring
Well #6	11-17-10	13 ppm	13	None	None	
Well #7	11-17-10	13 ppm	13	None	None	
Well #8	11-17-10	16 ppm	16	None	None	
Well #9	11-17-10	18 ppm	18	None	None	
Well # 10	11-17-10	20 ppm	20	None	None	
Farm Group	8-18-07	47 ppm	47	None	None	
Main House	8-18-07	17 ppm	17	None	None	
BRR	8-18-07	84 ppm	84	None	None	
Hardness (ppm)						
Farm Group (Raw)	6-10-09	120 ppm	120	None	None	Sum of polyvalent
Well #3	11-17-10	470 ppm	470	None	None	cations present in the
Well # 5	11-17-10	230 ppm	230	None	None	water, generally magnesium and
Well #6	11-17-10	150 ppm	150	None	None	calcium, and are
Well #7	11-17-10	90 ppm	90	None	None	usually naturally
Well #8	11-17-10	140 ppm	140	None	None	occurring
Well #9	11-17-10	380 ppm	380	None	None	
Well # 10	11-17-10	470 ppm	470	None	None	
Farm Group	8-18-07	60 ppm	60	None	None	
Main House	8-18-07	180 ppm	180	None	None	
BRR	8-18-07	140 ppm	140	None	None	

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
2,4,5-TP	8-22-22	UG/L	UG/L	50	3	Residue of
Well 01		<1				banned
Well 08		<1				herbicide
Well 09		<1				
2,4-D	8-22-22	UG/L	UG/L	70	20	Runoff from
Well 01		<10				herbicide used
Well 08		<10				on row crops, range land,
Well 09		<10				lawns, and aquatic weeds
ANTIMONY, TOTAL	8-22-22	UG/L	UG/L	6	1	Discharge from petroleum
Well 03		<6				refineries; fire retardants;
Well 05		<6				ceramics;
Well 06		<6				electronics;
Well 07		<6				solder
Well 08		<6				
Well 09		<6				
Well 10		<6				
ARSENIC	8-22-22	UG/L	UG/L	10	0.004	Erosion of
Well 01		3.5				natural
Well 03		<2				deposits; runoff from orchards;
Well 05		<2				glass and
Well 06		<2				electronics
Well 07		<2				production wastes
Well 08		<2				wasics
Well 09		<2				
Well 10		<2				

BARIUM	8-22-22	MG/L	MG/L	1	2	Discharges of
Well 03		<0.1				oil drilling
Well 05		<0.1				wastes and from metal
Well 06		<0.1				refineries;
Well 07		<0.1				erosion of
Well 08		<0.1				natural deposits
Well 09		<0.1				
Well 10		<0.1				
BENTAZON	8-22-22	UG/L	UG/L	18	200	Runoff/leaching
Well 01		<2				from herbicide
Well 08		<2				used on beans,
Well 09		<2				peppers, corn, peanuts, rice,
						and ornamental
						grasses
BERYLLIUM, TOTAL	8-22-22	UG/L	UG/L	4	1	Discharge from metal refineries,
Well 03		<1				coal-burning
Well 05		<1				factories, and electrical,
Well 06		<1				aerospace, and
Well 07		<1				defense
Well 08		<1				industries
Well 09		<1				
Well 10		<1				
BROMATE	Monthly	UG/L	UG/L	10	0.1	Byproduct of
Farm Group		<5				drinking water
Main House		<5				disinfection
BRR		<5				
CADMIUM	8-22-22	UG/L	UG/L	5	0.04	Internal
Well 03		<1				corrosion of
Well 05		<1				galvanized pipes; erosion
Well 06		<1				of natural
Well 07		<1				deposits;
Well 08		<1				discharge from
Well 09		<1				electroplating and industrial
Well 10		<1				chemical
						factories, and
						metal refineries; runoff from
						waste batteries
						and paints

CHLORINE	Monthly	MG/L	MG/L	[4.0 (as	[4 (as	Drinking water
Farm Group	Monday	0.7 avg.	0.3-1.20	Cl2)]	Cl2)]	disinfectant
Main House		1.7 avg	0.9-3.3			added for
BRR		1.4 avg	0.25-2.6			treatment
CHROMIUM	8-22-22	UG/L	UG/L	50	(100)	Discharge from
Well 03	V	<10	33,1		(100)	steel and pulp
Well 05		<10				mills and
Well 06		<10				chrome plating; erosion of
Well 07		<10				natural deposits
Well 08		<10				
Well 09		<10				
Well 10		<10				
DALAPON	8-22-22	UG/L	UG/L	200	790	Runoff from
Well 01	V	<10	33.1			herbicide used
Well 08		<10				on rights-of-
Well 09		<10				way, and crops and landscape
77011 00		10				maintenance
DINOSEB	8-22-22	UG/L	UG/L	7	14	Runoff from
Well 01		<2				herbicide use
Well 08		<2				on soybeans, vegetables, and
Well 09		<2				fruits
FLOURIDE	8-22-22	MG/L	MG/L	2	1	Erosion of
Well 03		<0.1				natural
Well 05		<0.1				deposits; water additive that
Well 06		<0.1				promotes
Well 07		<0.1				strong teeth;
Well 08		<0.1				discharge from fertilizer and
Well 09		<0.1				aluminum
Well 10		<0.1				factories
GROSS ALPHA PARTICLE ACTIVITY	8-22-22	pCi/L	pCi/L	15	(0)	Erosion of natural deposits
Well 10		0.968+/-				
		0.966+/-				
HAA5 [Sum of 5	7-11-22	UG/L	UG/L	60	N/A	Byproduct of
Haloacetic Acids]						drinking water
Farm Group		<1				disinfection
Main House		<1				
BRR		<1				

MERCURY	8-22-22	UG/L	UG/L	2	1.2	Erosion of
Well 03		<1				natural
Well 05		<1				deposits; discharge from
Well 06		<1				refineries and
Well 07		<1				factories; runoff
Well 08		<1				from landfills and cropland
Well 09		<1				and cropiand
Well 10		<1				
NICKEL	8-22-22	UG/L	UG/L	100	12	Erosion of
Well 03		<10				natural
Well 05		<10				deposits; discharge from
Well 06		<10				metal factories
Well 07		<10				
Well 08		<10				
Well 09		13				
Well 10		<10				
NITRATE	8-22-22	MG/L	MG/L	10	10	Runoff and
Well 01		<0.4		(as N)	(as N)	leaching from
Well 03		<0.4				fertilizer use; leaching from
Well 05		<0.4				septic tanks
Well 06		<0.4				and sewage;
Well 07		1				erosion of natural deposits
Well 08		<0.4				Hatural doposits
Well 09		<0.4				
Well 10		<0.4				

NITDITE	0.00.00	MO#	MO			D #l
NITRITE	8-22-22	MG/L	MG/L	1 (N)	1 (N)	Runoff and leaching from
Well 01		<0.2		(as N)	(as N)	fertilizer use;
Well 03		<0.2				leaching from
Well 05		<0.2				septic tanks
Well 06		<0.2				and sewage; erosion of
Well 07		<0.2				natural deposits
Well 08		<0.2				'
Well 09		<0.2				
Well 10		<0.2				
PENTACHLOROP HENOL	8-22-22	UG/L	UG/L	1	0.3	Discharge from wood
Well 01		<0.2				preserving
Well 08		<0.2				factories, cotton and other
Well 09		<0.2				insecticidal/her
		10.2				bicidal uses
PERCHLORATE	8-22-22	UG/L	UG/L	6	1	Perchlorate is
Well 01		<2				an inorganic
Well 03		<2				chemical used in solid rocket
Well 05		<2				propellant,
Well 06		<2				fireworks,
Well 07		<2				explosives,
Well 08		<2				flares, matches, and a variety of
Well 09		<2				industries. It
Well 10		<2				usually gets
						into drinking
						water as a result of
						environmental
						contamination
						from historic
						aerospace or other industrial
						operations that
						used or use,
						store, or
						dispose of perchlorate and
						its salts.
PICLORAM	8-22-22	UG/L	UG/L	500	166	Herbicide runoff
Well 01		<1				
Well 08		<1				
Well 09		<1				

SELENIUM	8-22-22	UG/L	UG/L	50	30	Discharge from
Well 03		<5				petroleum,
Well 05		<5				glass, and
Well 06		<5				metal refineries; erosion of
Well 07		<5				natural
Well 08		<5				deposits;
Well 09		<5				discharge from
Well 10		<5				mines and chemical
10000						manufacturers;
						runoff from
						livestock lots (feed additive)
THALLIUM,	8-22-22	UG/L	UG/L	2	0.1	Leaching from
TOTAL		00.2		_		ore-processing
Well 03		<1				sites; discharge
Well 05		<1				from electronics,
Well 06		<1				glass, and drug
Well 07		<1				factories
Well 08		<1				
Well 09		<1				
Well 10		<1				
TOTAL	7-11-22	UG/L	UG/L	60	N/A	Byproduct of
HALOACETIC						drinking water
ACIDS (HAA5)						disinfection
Farm Group		<1				
Main House		<1				
Big Rock		<1				
TTHM	7-11-22	UG/L	UG/L	80	N/A	Byproduct of
Farm Group		<1				drinking water
Main House		<1				disinfection
Big Rock		1.300				

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or	Sample	Level	Range of		PHG	Typical Source
Constituent (and reporting units)	Date	Detected	Detections	SMCL	(MCLG)	of Contaminant
ALUMINUM	8-22-22	MG/L	MG/L	1	0.6	Erosion of natural
Well 03		<0.05				deposits; residue
Well 05		<0.05				from some surface water treatment
Well 06		<0.05				processes
Well 07		<0.05				'
Well 08		<0.05				
Well 09		<0.05				
Well 10		<0.05				
		Farm Gr	oup – Raw Wa	ater_		
Bicarbonate	6/10/09	140 ppm	140 ppm	N/A	N/A	
Calcium**	6/10/09	31 ppm	31 ppm	30	N/A	
C1.1 '.1	6/10/00	1.2	10	ppm	>T/A	D 00/1 1:
Chloride	6/10/09	12 ppm	12 ppm	500 ppm	N/A	Run-off/leaching from natural deposits; seawater influence
Magnesium	6/10/09	9.5 ppm	9.5 ppm	125 ppm	N/A	Naturally occurring organic materials.
Odor	6/10/09	1 TON	1 TON	3 TON	N/A	Naturally occurring
Specific Conductance	6/10/09	260 umho	260 umho	1600 umho	N/A	Substances that form ions when in water; seawater influence.
Sulfate as SO4	6/10/09	7.3 ppm	7.3 ppm	500 ppm	N/A	Run-off, leaching from natural deposits, industrial wastes.
Total Dissolved	6/10/09	190 ppm	190 ppm	1000	N/A	Run-off, leaching
Solids (TDS)	6/10/00	1.40	140	ppm	00 / 100	from natural deposits.
Total Alkalinity**	6/10/09	140 ppm	140 ppm	80 to 120	80 to 120 ppm	
				ppm	ppin	
Total Hardness	6/10/09	120 ppm	120 ppm	50 to 150 ppm	N/A	
pН	6/10/09	7.13	6.84	6.5-8.5	6.5-8.5	
	1		up – Treated V		1	ı
A gayogaiya I - da-44	0/10/07	11 2	11.2	\12		
Aggressive Index** Aluminum	8/18/07 8/18/07	11.3 71 ppb	11.3 71 ppb	>12 200	N/A	Erosion of natural
1 210111111111111	0/10/07	, 1 ppo	, i ppo	ppb	11/11	deposits
Bicarbonate	8/18/07	120 ppm	120 ppm	N/A	N/A	•
Calcium	8/18/07	17 ppm	17 ppm	N/A	N/A	

Chloride	8/18/07	14 ppm	14 ppm	500 ppm	N/A	Run-off/leaching from natural deposits; seawater influence
Magnesium	8/18/07				N/A	seawater influence
Odor	8/18/07				N/A	
Specific	8/18/07				N/A	
Conductance	0/10/07				14/71	
Sulfate as SO4	8/18/07				N/A	
Total Alkalinity	8/18/07	120 ppm	120 ppm	80 to	80 to 120	
-				120	ppm	
				ppm		
Total Hardness	8/18/07	60 ppm	60 ppm	50 to	N/A	
				150		
***	0/10/07	7.44	7.44	ppm	6505	
pH	8/18/07	7.44	7.44	6.5-8.5	6.5-8.5	
		<u> Main Hous</u>	e Group – Ra	w Water		
		I	Bicarbonate			
Well #3	11/17/10	280 ppm	280 ppm	N/A	N/A	
Well #5	11/17/10	150 ppm	150 ppm	N/A	N/A	
Well #8	11/17/10	60 ppm	60 ppm	N/A	N/A	
			Calcium		T	1
Well #3	11/17/10	140 ppm	140 ppm	N/A	N/A	
Well #5	11/17/10	70 ppm	70 ppm	N/A	N/A	
Well #8	11/17/10	42 ppm	42 ppm	N/A	N/A	
		T.2	Chloride	T-00	1 / .	T = 20# 4.
Well #3	11/17/10	13 ppm	13 ppm	500 ppm	N/A	Run-off/leaching from natural deposits; seawater influence.
Well #5	11/17/10	14 ppm	14 ppm	500	N/A	"
				ppm		
Well #8	11/17/10	6 ppm	6 ppm	500	N/A	"
			1	ppm		
		T	Color	T.,_	1 / .	T 4
Well #5 **	11/17/10	45 units	45 units	15	N/A	Naturally occurring
			T	units		organic materials.
Well #5 **	11/17/10	2100 mmh	Iron	300	N/A	I anahina fuam
Well #3	11/1//10	2100 ppb	2100 ppb		IN/A	Leaching from natural deposits,
				ppb		industrial wastes.
		1	 Magnesium			mastrar wastes.
Well #3	11/17/10	28 ppm	28 ppm	N/A	N/A	Leaching from
Well #5	11/17/10	13 ppm	13 ppm	N/A	N/A	natural deposits.
Well #8	11/17/10	7.5 ppm	7.5 ppm	N/A	N/A	ш
νν C11 #0	11/1//10		Manganese	11//1	1 N / A 1	
Well #5 **	11/17/10	89 ppm	89 ppm	50 ppb	N/A	Leaching from
	11/1//10	o bbm	o Phin	2 o ppo	1111	natural deposits.

			Odor			
Well #3	11/17/10	1 TON	1 TON	3 TON	N/A	Naturally occurring organic materials.
Well #5	11/17/10	1 TON	1 TON	3 TON	N/A	"
Well #8	11/17/10	1 TON	1 TON	3 TON	N/A	"
		Specif	fic Conductan	ce		·
Well #3	11/17/10	930 umho	930 umho	1600 umh	N/A	Substances that form ions when in water; sea water
Well #5	11/17/10	460 umho	460 umho	1600 umh	N/A	ii
Well #8	11/17/10	340 umho	340 umho	1600 umh	N/A	"
		Su	lfate as SO4			
Well #3	11/17/10	180 ppm	180 ppm		N/A	Run off, leaching from natural deposits; industrial wastes
Well #5	11/17/10	50 ppm	50 ppm		N/A	"
Well #8	11/17/10	80 ppm	80 ppm		N/A	"
		Total Dis	solved Solids ((TDS)		
Well #3	11/17/10	560 ppm	560 ppm		N/A	Run off, leaching from natural deposits.
Well #5	11/17/10	250 ppm	250 ppm		N/A	"
Well #8	11/17/10	200 pm	200 pm		N/A	и
		Tot	tal Alkalinity			•
Well #3 **	11/17/10	280 ppm	280 ppm	80-120 ppm		
Well #5 **	11/17/10	150 ppm	150 ppm	80-120 ppm		
Well #8	11/17/10	60 ppm	60 ppm	80-120 ppm		
	1	To	tal Hardness		•	
Well #3 **	11/17/10	470 ppm	470 ppm		N/A	
Well #5 **	11/17/10	230 ppm	230 ppm		N/A	
Well #8 **	11/17/10	140 ppm	140 ppm		N/A	
			Turbidity			
Well #5 **	11/17/10	26 NTU	26 NTU	5 NTU	N/A	Soil run-off
			Zinc			
Well #5	11/17/10	.061 ppm	.061 ppm		N/A	
			pН	ı	T	
Well #3	11/17/10	7.12	7.12	6.5-8.5	6.5-8.5	
Well #5	11/17/10	7.19	7.19	6.5-8.5	6.5-8.5	
Well #8	11/17/10	7.32	7.32	6.5-8.5	6.5-8.5	
		Main House (1	
Aggressive Index**	8/18/07	11.8	11.8	>12		

Aluminum	8/18/07	150 ppb	150 ppb	200	N/A	Erosion of natural
Alummum	0/10/07	130 ppo	130 ppo	ppb	IN/A	deposits.
Bicarbonate	8/18/07	110 ppm	110 ppm	N/A	N/A	deposits.
Calcium	8/18/07	57 ppm	57 ppm	N/A	N/A	
Chloride	8/18/07	9 ppm	9 ppm	500	N/A	Run-off, leaching
Cinoriae	0/10/07) ppin) ppin	ppm	11/71	from natural deposits;
				PPIII		sea water influence.
Magnesium	8/18/07	9.5 ppm	9.5 ppm	125	N/A	Sea water infraence.
TVI MONTO STORIN	0.10.07) to ppin	July Phin	ppm	1 1/12	
Odor	8/18/07	2.5 TON	2.5 TON	3 TON	N/A	Naturally occurring
						organic materials.
Specific	8/18/07	300 umho	300 umho	1600	N/A	Naturally occurring
Conductance				umho		organic materials.
Sulfate as NO4	8/18/07	65 ppm	65 ppm	500	N/A	Run off, leaching
				ppm		from natural deposits;
						industrial wastes.
Total Alkalinity	8/18/07	120 ppm	120 ppm	80-120	80-120	
				ppm	ppm	
Total Hardness**	8/18/07	180 ppm	180 ppm	50-180	N/A	
				ppm		
рН	8/18/07	7.45	7.45	6.5-8.5	6.5-8.5	
Zinc	8/18/07	0.11 ppm	0.11 ppm	5 ppm	N/A	Run off, leaching
						from natural deposits;
						industrial wastes
		Big Rock	Ranch – Raw	Water		
		Aluminum				Erosion of natural
		Alummum				deposits
Well # 10**	11/17/10	510 ppb	510 ppb	200 pp	N/A	
	•		Bicarbonate		l	
Well # 6	11/17/10	140 ppm	140 ppm	N/A	N/A	
Well # 7	11/17/10	57 ppm	57 ppm	N/A	N/A	
Well # 9	11/17/10	260 ppm	260 ppm	N/A	N/A	
Well # 10	11/17/10	210 ppm	210 ppm	N/A	N/A	
			Calcium			
Well # 6	11/17/10	36 ppm	36 ppm	N/A	N/A	
Well # 7	11/17/10	30 ppm	30 ppm	N/A	N/A	
Well # 9	11/17/10	94 ppm	94 ppm	N/A	N/A	
Well # 10	11/17/10	150 ppm	150 ppm	N/A	N/A	
		Chloride				Run off/leaching
						from natural deposits,
						seawater influence
W ₀ 11 # 6	11/17/10	10	10 mm		NT/A	
Well # 6	11/17/10	10 ppm	10 ppm		N/A	
Well # 7	11/17/10	5.1 pm	5.1 pm		N/A	
Well # 9 Well # 10	11/17/10	14 ppm	14 ppm		N/A	
1 M/OII # 111	11/17/10	6.3 ppm	6.3 ppm	I	N/A	1

		Color				Naturally occurring organic materials.
Well # 10	11/17/10	15 units	15 units	15 units	N/A	
	Leaching from natural deposits; industrial wastes.					
Well # 6	11/17/10	300 ppb	300 ppb	300 ppb	N/A	
Well # 9	11/17/10	200 ppb	200 ppb	300 ppb	N/A	
Well # 10**	11/17/10	1800 ppb	1800 ppb	300 ppb	N/A	
		N	Magnesium	.		•
Well # 6	11/17/10	14 ppm	14 ppm	N/A	N/A	
Well # 7	11/17/10	3.4 ppm	3.4 ppm	N/A	N/A	
Well # 9	11/17/10	36 ppm	36 ppm	N/A	N/A	
Well # 10	11/17/10	21 ppm	21 ppm	N/A	N/A	
	Leaching from natural deposits					
Well # 10**	11/17/10	1500 ppm	1500 ppm	1500 ppm	1500 ppm	
	Naturally occurring organic materials					
Well # 6	11/17/10	1 TON	1 TON	3 TON	N/A	
Well # 7	11/17/10	1 TON	1 TON	3 TON	N/A	
Well # 9	11/17/10	1 TON	1 TON	3 TON	N/A	
Well # 10	11/17/10	1 TON	1 TON	3 TON	N/A	
	Spe	ecific Conduct	ance			Substances that form ions when in water; seawater influence.
Well # 6	11/17/10	420 umho	420 umho	1600 umho	N/A	
Well # 7	11/17/10	230 umho	230 umho	1600 umho	N/A	
Well # 9	11/17/10	740 umho	740 umho	1600 umho	N/A	
Well # 10	11/17/10	670 umho	670 umho	1600 umho	N/A	
		Sulfate as SO	4			Run off/leaching from natural deposits; industrial wastes.
Well # 6	11/17/10	53 ppm	53 ppm	500 ppm	N/A	
Well # 7	11/17/10	29 ppm	29 ppm	500 ppm	N/A	

Well # 9 **	11/17/10	740 ppm	740 ppm	500	N/A	
				ppm		
Well # 10**	11/17/10	670 ppm	670 ppm	500	N/A	
				ppm		
	Total D	Dissolved Solid	ls (TDS)			Run off/leaching
			T		Г.	from natural deposits.
Well # 6	11/17/10	220 ppm	220 ppm	1000	N/A	
*** 11 // 6	11/15/10	220	220	ppm	37/4	
Well # 7	11/17/10	220 ppm	220 ppm	1000	N/A	
XX 11 // O	11/17/10	440	140	ppm	N T/A	
Well # 9	11/17/10	440 ppm	440 ppm	1000	N/A	
W7 11 // 10	11/17/10	400	400	ppm	NT/A	
Well # 10	11/17/10	400 ppm	400 ppm	1000	N/A	
			 tal Allxalinity	ppm		
Well # 6 **	11/17/10	140 ppm	tal Alkalinity 140 ppm	80-120	80-120	
VV CII # U	11/1//10	140 bbiii	140 hhiii			
Well # 7	11/17/10	57 ppm	57 ppm	80-120	ppm 80-120	
VV CII # /	11/1//10	37 ppiii	J/ ppin			
Well # 9 **	11/17/10	260 ppm	260 ppm	80-120	ppm 80-120	
VV CII π J	11/1//10	200 ppin	200 ppin	ppm	ppm	
Well # 10**	11/17/10	210 ppm	210 ppm	80-120	80-120	
W CΠ # 10	11/1//10	210 ppin	210 ppin	ppm	ppm	
		To	tal Hardness	Тррпп	ррии	
Well # 6	11/17/10	150 ppm	150 ppm	50-150	N/A	
,, c 11 // c	11/1//10	100 ppiii	100 ppiii	ppm	1 1/1 1	
Well # 7	11/17/10	90 ppm	90 ppm	50-150	N/A	
		7 7 77	FF	ppm		
Well # 9 **	11/17/10	380 ppm	380 ppm	50-150	N/A	
		11	1.1	ppm		
Well # 10**	11/17/10	470 ppm	470 ppm	50-150	N/A	
				ppm		
	·	Turbidity				Soil run off.
Well # 6	11/17/10	2.1 NTU	2.1 NTU	5 NTU	N/A	
Well # 9	11/17/10	1.7 NTU	1.7 NTU	5 NTU	N/A	
Well # 10**	11/17/10	29 NTU	29 NTU	5 NTU	N/A	
		Zinc				Run off/leaching
						from natural deposits;
					T	industrial wastes.
Well # 7	11/17/10	.062 ppm	.062 ppm	5 ppm	N/A	
Well # 9	11/17/10	.28 ppm	.28 ppm	5 ppm	N/A	
Well # 10	11/17/10	.071 ppm	.071 ppm	5 ppm	N/A	
			pН			T
	11/17/10	7.5	7.5	6.5-8.5	6.5-8.5	
Well # 6						
Well # 7	11/17/10	7.48	7.48	6.5-8.5	6.5-8.5	
		7.48 7.12 7.61	7.48 7.12 7.61	6.5-8.5 6.5-8.5 6.5-8.5	6.5-8.5 6.5-8.5 6.5-8.5	

		Big Rock R	anch – Treate	d Water		
Aluminum	8/2/10	93 ppb	93 ppb	200 ppb	N/A	
Bicarbonate	6/10/09	210 ppm	210 ppm	N/A	N/A	
Calcium **	6/10/09	34 ppm	34 ppm	30 ppm	N/A	
Chloride	6/10/09	14 ppm	14 ppm	500 ppm	N/A	
Magnesium	6/10/09	16 ppm	16 ppm	125 ppm	N/A	
Odor	6/10/09	2.5 TON	2.5 TON	3 TON	N/A	
Specific Conductance	6/10/09	460 umho	460 umho	1600 umho	N/A	
Sulfate as SO4	6/10/09	70 ppm	70 ppm	500 ppm	N/A	
Total Alkalinity**	6/10/09	210 ppm	210 ppm	80-120 ppm	80-120 ppm	
Total Alkalinity**	6/10/09	140 ppm	140 ppm			
рН	6/10/09	7.77	7.77	6.5-8.5	6.5-8.5	

Table 6. Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
None	N/A	N/A	N/A	N/A	N/A

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Skywalker Ranch_is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or

cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Additional Special Language for Nitrate, Arsenic, Lead, Radon, and Cryptosporidium: N/A

State Revised Total Coliform Rule (RTCR): N/A

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
None	N/A	N/A	N/A	N/A

For Water Systems Providing Groundwater as a Source of Drinking Water

Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples

Microbiological Contaminants (complete if fecal- indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	0	N/A	0	(0)	Human and animal fecal waste
Enterococci	0	N/A	TT	N/A	Human and animal fecal waste
Coliphage	0	N/A	TT	N/A	Human and animal fecal waste

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Violation of a Groundwater TT

Special Notice of Fecal Indicator-Positive Groundwater Source Sample: NONE, N/A

Special Notice for Uncorrected Significant Deficiencies: NONE, N/A $\,$

Table 9. Violation of Groundwater TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
N/A	N/A	N/A	N/A	N/A

For Systems Providing Surface Water as a Source of Drinking Water

Table 10. Sampling Results Showing Treatment of Surface Water Sources

Treatment Technique (a) (Type of approved filtration technology used)	N/A
Turbidity Performance Standards (b) (that must be met through the water	Turbidity of the filtered water must: 1 – Be less than or equal to N/A NTU in 95% of
treatment process)	measurements in a month.
	2 – Not exceed N/A NTU for more than eight consecutive hours.
	3 – Not exceed N/A NTU at any time.
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	N/A
Highest single turbidity measurement during the year	N/A
Number of violations of any surface water treatment requirements	N/A

⁽a) A required process intended to reduce the level of a contaminant in drinking water.

Summary Information for Violation of a Surface Water TT

Table 11. Violation of Surface Water TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
N/A	N/A	N/A	N/A	N/A

⁽b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.