2022 Consumer Confidence Report | Water System Name: | Estero Mu | tual Water Company | Report Date: | June 29, 2023 | |---|-----------------------------------|--|--|---| | We test the drinking wat
results of monitoring for | ter quality for
r the period o | all constituents as required
f January 1-December 31, 2 | by state and federal
022 as well as previ | regulations. This report shows the ous data where applicable. | | Type of water source(s) | in use: Surf | ace water + three ground wa | ter wells. | | | Name & location of sou | | ervoir, Well 12, Well 13 and | l Well 14, Dillon Be | each, California | | Drinking Water Source | | | California Departmen | | | Time and place of regul
Tomales Regional Hist | arly schedule
tory Center, T | d board meetings for public omales, California. | participation: Mon | thly Board of Director Meetings, | | For more information, c | | | Phone: | (707) 878-2400 | #### TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA). Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions. ND: not detectable at testing limit ppm: parts per million or milligrams per liter (mg/L) ppb: parts per billion or micrograms per liter (ug/L) ppt: parts per trillion or nanograms per liter (ng/L) ppq: parts per quadrillion or picogram per liter (pg/L) pCi/L: picocuries per liter (a measure of radiation) The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. ### Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the USEPA and the state Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health. Tables 1, 2, 3, 4, and 5 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. | quanty, are more than or | | | CHONING TH | DE DETECT | TON OF C | OLIEODM BACTERIA | |--|--|---|---|---------------|-------------|---| | TABLE 1 – | SAMPLING | RESULTS | SHOWING TI | HE DETECT | ION OF C | OLIFORM BACTERIA | | Microbiological Contaminants (complete if bacteria detected) | Highest No.
of Detections | No. of
months
in
violation | MCL | | MCLG | Typical Source of Bacteria | | Total Coliform Bacteria | (In a mo.) | NONE | More than 1 sample in a month with a detection | | 0 | Naturally present in the environment | | Fecal Coliform or E. coli | (In the year) none | NONE | A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or E. coli | | 0 | Human and animal fecal waste | | TABLE 2 | - SAMPLIN | G RESUL | TS SHOWING | THE DETE | CTION OF | LEAD AND COPPER | | Lead and Copper
(complete if lead or copper
detected in the last sample set) | No. of samples collected | 90 th
percentile
level
detected | No. sites exceeding AL | AL | PHG | Typical Source of Contaminant | | Lead (ppb) 9/19/22
Samples taken from
various households | 5 | 0.00
mg/L | none | 0.015
mg/L | 2 | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits | | Copper (ppm) 9/19/22
Samples taken from
various households | 5 | 0.09
mg/L | none | 1.3
mg/L | 0.17 | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | | | TABLE 3 | - SAMPL | NG RESULTS | FOR SODI | JM AND H | ARDNESS | | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL | PHG
MCLG | Typical Source of Contaminant | | Sodium (ppm) Well 12
Well 13
Well 14
Reservoir | 06/22/21
06/22/21
06/22/21
06/23/22 | 41.0 ppm
44.0 ppm
38.0 ppm
69.0 ppm | | none | none | Salt present in the water and is generally naturally occurring | | Hardness (ppm) Well 12 Well 13 Well 14 Reservoir | 06/22/21
06/22/21
06/22/21
06/23/22 | 98.0 ppm
75.0 ppm
65.0 ppm
110 ppm | none | none | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | |--|--|---|------|------|--| |--|--|---|------|------|--| | | Reservoir | 06/23/22 | 110 ppm | | | | | |------------------------------|--|--|--|------------------------|------------------|----------------------|--| | | | | | | | | led later in this report. | | TA | BLE 4 – DET | ECTION | OF CONTAN | MINANTS WI | TH A PRIN | IARY DRI | NKING WATER STANDARD | | Chemical or (| | Sample
Date | Level
Detected | Range of
Detections | MCL
MRDL | PHG
MCLG
MRDLG | Typical Source of Contaminant | | Aluminum | Reservoir | 06/23/22 | ND | | 1000 ug/L | | Erosion of natural deposits | | Fluoride mg/I | Well 12
Well 13
Well 14
Reservoir | 06/22/21
06/22/21
06/22/21
06/23/22 | 1.10 mg/L
1.00 mg/L
0.13 mg/L
0.17 mg/L | | 2.0 mg/L | PHG
1.0mg/L | Erosion of natural deposits | | Nitrate mg/L | Well 12
Well 13
Well 14
Reservoir | 06/23/22
06/23/22
06/23/22
05/04/21
06/23/22 | ND
ND
ND
ND | | 10 mg/L | 10 mg/L | Soil runoff from grazing, sewer system | | Total Trihalo
(TTHMs) ug/ | | 01/25/22
04/25/22
07/25/22
11/29/22 | 80.0 ug/L
55.0 ug/L
27.0 ug/L
30.0 ug/L | | 80 ug/L | | By-product of drinking water chlorination | | Haloacetic A | acids ug/L | 01/25/22
04/25/22
07/25/22
11/29/22 | 31.3 ug/L
34.9 ug/L
19.7 ug/L
19.5 ug/L | | 60 ug/L | | By-product of drinking water chlorination | | TAI | BLE 5 - DET | ECTION C | F CONTAM | IINANTS WI | ГН А <u>SECO</u> | <i>NDARY</i> DI | RINKING WATER STANDARD | | Chemical or | | Sample
Date | Level
Detected | Range of Detections | MCL | PHG
MCLG | Typical Source of Contaminant | | Iron ug/L | Reservoir
Well 12
Well 13
Well 14 | 06/23/22
06/22/21
06/22/21
06/22/21 | ND ug/L
ND ug/L
1200 ug/L
590 ug/L | 110-290 | 300 ug/L | | Leach from natural deposits | | Total Dissolved
ppm | 1 Solids (TDS)
Reservoir
Well 12
Well 13
Well 14 | 06/23/22
06/22/21
06/22/21
06/22/21 | 330 ppm
200 ppm
200 ppm
140 ppm | 0 | 1000 ppm | | Runoff/leaching from natural deposits | | Specific Condu | Reservoir
Well 12
Well 13
Well 14 | 06/23/22
06/22/21
06/22/21
06/22/21 | 600 uS/cm
360 uS/cm
350 uS/cm
310 uS/cm | | 1600
uS/cm | | Substances that form ions when in water; seawater influence. | | Chemical or Co | | Sample Date | Level
Detected | Range of Detections | Notificatio | | Health Effects Language | | | |---|-------------------------------|----------------------------------|-----------------------------------|---------------------|--------------------|---------|--|--|--| | | | TABLE | O-DETEC | TION OF ON | REGULATE | DCONTA | MINANTS | | | | TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS | | | | | | | | | | | | Well 13
Well 14 | 6/22/21
6/22/21 | ND
ND | | | | | | | | Odor TON | Reservoir
Well 12 | 06/23/22
6/22/21 | 8 TON
ND | | 3.0 TON | | Naturally occurring organic materials. | | | | , | Well 12
Well 13
Well 14 | 6/22/21
6/22/21
6/22/21 | 1.50 NTU
6.30 NTU
1.00 NTU | 3
% | 3.0 N10 | | Soil runoff. | | | | Manganese ug/L Turbidity NTU | Well 13
Reservoir | 6/22/21 | 22.0 ug/L
1.20 NTU | | 50 ug/L
5.0 NTU | | Leaching from natural deposits. | | | | | Well 14 | 06/22/21 | 25.0 mg/L | | | 1000.00 | | | | | | Well 13 | 06/22/21 | 11.0 mg/L | | | | | | | | Sulfate mg/L | Reservoir
Well 12 | 06/23/22
06/22/21 | 20.0 mg/L
28.0 mg/L | | 500 mg/L | | Soil runoff | | | | | Well 13
Well 14 | 06/22/21
06/22/21 | 10.0
<5.0 | | | Es | | | | | | Reservoir
Well 12 | 06/23/22
06/22/21 | 40.0 5.0 | | 15 | | Naturally-occurring organic materials | | | | | Well 13
Well 14 | 06/22/21 | 53.0 ppm | | | | | | | | Chloride ppm | Reservoir
Well 12 | 06/23/22
06/22/21
06/22/21 | 110.0 ppm
58.0 ppm
71.0 ppm | | 500 ppm | | Runoff / leaching from natural deposits; seawater influence. | | | ^{*}Any violation of an MCL, MRDL, or TT is noted in **bold font**. Additional information regarding the violation is provided later in this report. ### Additional General Information on Drinking Water Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Estero Mutual Water Company's Micro filtration system is mechanically capable of filtering Cryptosporidium, and other microbial contaminants such as coliform bacteria, fecal coliform, and Giardia even prior to the addition of chlorine as a federally required disinfectant. # Summary Information for Contaminants Exceeding an MCL, MRDL, or AL or Violation of Any TT or Monitoring and Reporting Requirement - -There were NO Primary Contaminants that exceeded an MCL. - -There were NO Contaminants that exceeded an MRDL, AL. - -There were NO Violations of any Treatment Techniques (TT). - -There were NO_Violations of any Monitoring and Reporting Requirements. -AS PREVIOUSLY NOTED Trihalomethanes and Haloacetic Acids are by-products of drinking water chlorination which is federally required in all drinking water systems as a disinfection agent. -AS A CONTINUING REMINDER Trihalomethanes and Haloacetic Acids can be further reduced at your home, if desired with the proper use of household activated carbon filtration. Iron, color and odor are reported <u>PRIOR to filtration</u> at EMWC facility. They are <u>SECONDARY</u> Contaminants -the MCL is set on a basis of <u>AESTHETICS ONLY.</u> (Proper use of household activated carbon filtration will reduce iron, color and odor if desired). -There are NO PHGs, MCLGs or mandatory standard health effects for Secondary Contaminants. ### For Systems Providing Ground Water as a Source of Drinking Water (Refer to page 1, "Type of water source in use" to see if your source of water is surface water or groundwater) TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLES PHG Microbiological Contaminants MCL Total No. of Sample **Typical Source of Contaminant** MCLG **Detections** Dates MRDL (complete if fecal-indicator detected) MRDLG Human and animal fecal waste (In the year) N/A 0 (0)E. coli NONE 0 Human and animal fecal waste (In the year) N/A n/a Enterococci NONE TT 0 Human and animal fecal waste Coliphage (In the year) N/A n/a NONE TT ## Summary Information for Fecal Indicator-Positive Ground Water Source Samples, Uncorrected Significant Deficiencies, or Violation of a Ground Water TT -NONE DETECTED - THERE WERE NO DEFICIENCES OR VIOLATIONS. - -There were NO Fecal Indicator-Positive results from Ground Water Source Samples. - -There were <u>NO</u> Deficiencies in Ground Water Treatment Technique (TT). - -There were NO Violations of a Ground Water Treatment Technique (TT). #### For Systems Providing Surface Water as a Source of Drinking Water (Refer to page 1, "Type of water source in use" to see if your source of water is surface water or groundwater) | TABLE 8 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES | | | | | | | |---|--|--|--|--|--|--| | Treatment Technique ^(a) (Type of approved filtration technology used) | Micro Filtration | | | | | | | Turbidity Performance Standards ^(b) (that must be met through the water treatment process) | Turbidity of the filtered water must: 1 - Be less than or equal to 0.1 NTU in 95% of measurements in a month. 2 - Not exceed 1.0 NTU for more than eight consecutive hours. 3 - Not exceed 2.0 NTU at any time. | | | | | | | Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1. | 100% of samples met Turbidity Performance Standard No. 1 | | | | | | | Highest single turbidity measurement during the year | 0.091 NTU | | | | | | | Number of violations of any surface water treatment requirements | NONE | | | | | | - (a) A required process intended to reduce the level of a contaminant in drinking water. - (b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements. - * Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided earlier in this report. ### Summary Information for Violation of a Surface Water TT | -There were <u>NO</u> | VIOLATIONS | of a Surface Water | Treatment Techn | nique (TT). | | |-----------------------|------------|--------------------|-----------------|-------------|--| | | ¥ | | | | | | | | | | | | **Please feel free to contact Estero Mutual Water Company (707) 878-2400 with any questions or concerns** 2009 SWS CCR Form