2020 CONSUMER CONFIDENCE REPORT ROOT CREEK WATER DISTRICT

Water System Information

Water System Name: Riverstone / Root Creek WD Report Date: July 1, 2021

Type of Water Source(s) in Use: Groundwater

Name and General Location of Source(s): Riverstone / Root Creek WD Wells are located in Madera County, California. Well #1 and Well #2 were used in the calendar year 2020, Well #4 was monitored, but no water was served to the customers.

Drinking Water Source Assessment Information: A source water assessment was completed for the source delivering water to the distribution system. The assessment identifies the vulnerability of the drinking water supply to contamination from typical human activities. The assessments are intended to facilitate and provide basic information necessary for a local community to develop a program to protect the drinking water supply. These assessments are kept on file at the Operator's office located at 5105 E. Belmont Ave., Fresno, CA 93727. If you have any questions regarding these assessments, contact our office or make an appointment during business hours: Mon – Fri, 8:00 a.m. to 5:00 p.m.

Meetings for Public Participation: 1st Monday of each Month at 11:00 a.m. Root Creek WD Board of Director's meetings are held at the Riverstone Lodge located at 370 S. Lodge Rd, Madera, CA 93636.

For More Information, contact: Steve Pickens or Shay Bakman (559) 326 - 2222

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2020 and may include earlier monitoring data.

This report contains important information about your drinking water. Please contact Riverstone/Root Creek WD at (559) 326-2222 for more information or assistance in the appropriate language.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Riverstone/Root Creek WD a (559) 326-2222 para asistirlo en español.

这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Riverstone/Root Creek WD 以获得中文的帮助: (559) 326-2222.

Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa Riverstone/Root Creek WD o tumawag sa (559) 326-2222 para matulungan sa wikang Tagalog.

Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ Riverstone/Root Creek WD tại (559) 326-2222 để được hỗ trợ giúp bằng tiếng Việt.

Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau Riverstone/Root Creek WD ntawm (559) 326-2222 rau kev pab hauv lus Askiv.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ppq	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

	g research showing the Detection of Comment Basicina							
Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria			
Total Coliform Bacteria (State Total Coliform Rule)	(In a month) 1	0	1 positive monthly sample (a)	0	Naturally present in the environment			
Fecal Coliform or <i>E. coli</i> (State Total Coliform Rule)	(In the year) 0	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive	None	Human and animal fecal waste			
E. coli (Federal Revised Total Coliform Rule)	(In the year) 0	0	(b)	0	Human and animal fecal waste			

⁽a) Two or more positive monthly samples is a violation of the MCL

Table 2. Sampling Results Showing the Detection of Lead and Copper

Lead And Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source Of Contaminant
Lead (ppb)	8/26/20	20	2.2	0	15	0.2	N/A	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	8/26/20	20	0.170	0	1.3	0.3	N/A	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Table 3. Sampling Results for Sodium and Hardness Wells 1 & 2

Chemical or Constituent (reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	2019	47.50	26 - 69	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	2019	160	110 - 210	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

⁽b) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 4. Detection of Contaminants with a Primary Drinking Water Standard Wells 1 & 2									
Chemical or Constituent (reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant			
Fluoride (ppm)	2019	0.11	0.0 – 0.20	2.0	1	Erosion of natural deposits, water additive that promotes strong teeth; discharge from fertilizer and aluminum factories			
Aluminum (ppm)	2019	.036	0.0100	1	0.6	Erosion of natural deposits; residual from surface water treatment processes			
Arsenic (ppb)	2019	4.47	3.4 – 5.5	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics productions waste			
Barium (ppm)	2019	0.233	.170340	1	2	Erosion of natural deposits; Discharge of oil drilling waste and from metal refineries			
Chromium (Total) (ppb)	2019	2.77	1.7 – 4.3	50	(100)	Discharge from steel and pulp mills, chrome plating; erosion from natural deposits			
Nickel (ppb)	2019	0.67	0 - 2	100	12	Erosion of natural deposits; discharge from metal factories			
Selenium (ppb)	2019	1.57	1.1 – 2.3	50	30	Discharges from petroleum, glass and metal refineries; erosion of natural deposits; discharges from mines and chemical manufacturers; runoff from livestock lots (feed additive)			
Nitrate as N (ppm)	2020	2.3	0 – 5.9	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits			
Nitrite as N (ppm)	2019	.23	070	1	1	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits			
Gross Alpha (pCi/L)	2020	<u>+</u> .94	<u>+</u> 0 – 1.87	15	(0)	Erosion of natural deposits			
Combined Radium 226 & 228 (pCi/L)	2018	<u>+</u> 1.78 0.64	<u>+</u> .685- 3.195 0.54 – 0.725	5	0	Erosion of natural deposits			
Hexavalent Chromium (ppb)	2016	.66	0 – 1.2	N/A	0.02	Discharge from electroplating factories, leather tanneries, wood preservatives, chemical synthesis, refractory production and textile manufacturing facilities; erosion of natural deposits			

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard Wells 1 & 2

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard Wens 1 & 2							
Chemical or Constituent (reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source Of Contaminant	
Aluminum (ppb)	2019	36.1	0 – 100	200	N/A	Erosion of natural deposits; residual from surface water treatment processes	
Chloride (ppm)	2019	113	50 – 230	500	N/A	Runoff/leaching from natural deposits; sea water influence	
Color (units)	2019	5	5	15	N/A	Naturally occurring organic material	
Copper (ppm)	2019	0.082	0 – 0.190	1.0	0.3	Erosion of natural deposits leaching fromwood preservatives	
Iron (ppb)	2020	250	70 - *730	300	N/A	Leaching from natural deposits; industrial waste	
Manganese (ppb)	2020	58.53	0.12 - *150	50	N/A	Leaching from natural deposits	
Odor Threshold (units)	2019	1.5	1 – 2.5	3	N/A	Naturally-occurring organic materials	
Specific Conductance (µS/cm)	2019	540	390 – 840	1,600	N/A	Substances that form ions when in water; sea water influence	
Sulfate (ppm)	2019	7.83	3 – 14	500	N/A	Runoff/ leaching from natural deposits; industrial waste	
Total Dissolved Solids (TDS) (ppm)	2019	406.67	290 – 630	1,000	N/A	Runoff/ leaching from natural deposits	
Turbidity (NTU)	2019	1.05	0.25 – 2.3	5	N/A	Soil run off	
Zinc (ppm)	2019	0.0087	0 – 0.017	5.0	N/A	Runoff/leaching from natural deposits; Industrial waste	
Lead at well head (ppb)	2019	3.9	0 – 7.1	15	0.2	Internal corrosion of household water plumbing systems; discharges from Industrial manufacturers; erosionof natural deposits	

Table 6. Detection of Unregulated Contaminants

abio or Dottotion or omogalatoa contaminanto										
Chemical or Constituent (reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects Language					
Total Alkalinity as CaCO3 (ppm)	2019	80	75 - 90	N/A	N/A					
Aggressive Index (Corrosivity)	2019	11.3	11 - 12	N/A	N/A					
Potassium (ppm)	2019	5.53	5.2 – 5.8	N/A	N/A					

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Riverstone/Root Creek WD is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Arsenic Specific-Language: While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Nitrate-Specific Language: Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement

Violation	Explanation Duration		Actions Taken to Correct Violation	Health Effects Language	
0	N/A	N/A	N/A	N/A	

For Water Systems Providing Groundwater as a Source of Drinking Water

Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples

Microbiological Contaminants	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	0	N/A	0	(0)	Human and animal fecal waste
Enterococci	0	N/A	TT	N/A	Human and animal fecal waste
Coliphage	0	N/A	TT	N/A	Human and animal fecal waste