2024 Consumer Confidence Report Water System Name: AZTECA MILLING LP WATER SYSTEM Report Date: 01/01/2025 We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2024 and may include earlier monitoring data. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien. Type of water source(s) in use: 2 WATER WELLS Name & general location of source(s): WELL1; LOCATED CLOSE TO THE MAINTENANCE SHOP. WELL 2 IN THE BACK OF THE MASA PLANT GROUNDS. WELL #3 LOCATED NEXT TO MAIN OFFICE Drinking Water Source Assessment information: A WATER ASSESSMENT WAS CONDUCTED OF THE WATER SYSTEM 2 WELLS THAT MAKE UP THE AZTECA MILLING WATER SYSTEM ON MARCH 2002. A COPY MAY BE VIEWED AT; MADERA COUNTY ENVIRONMENTAL HEALTH. 200 W 4TH ST, CA 93637 Time and place of regularly scheduled board meetings for public participation: AZTECA MANAGEMENT MEETINGS WEEK DAYS 8AM TO 5PM. For more information, contact: JORDAN MESILLAS ROMOS Phone: System 2000682 (559)662-8410 #### TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA). Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions. **Level 1 Assessment**: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. ND: not detectable at testing limit **ppm**: parts per million or milligrams per liter (mg/L) ppb: parts per billion or micrograms per liter (µg/L) ppt: parts per trillion or nanograms per liter (ng/L) ppq: parts per quadrillion or picogram per liter (pg/L) pCi/L: picocuries per liter (a measure of radiation) The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. #### Contaminants that may be present in source water include: - *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health. Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. | TABLE 1 – | SAMPLING | RESULTS SHOWI | NG THE DETECTION | OF COLIF | ORM BACTERIA | |--|----------------------------|----------------------------|--|----------|------------------------------| | Microbiological Contaminants (complete if bacteria detected) | Highest No. of Detections | No. of months in violation | MCL | MCLG | Typical Source of Bacteria | | Total Coliform Bacteria | (in a month) | 0 | 1 positive monthly | 0 | Naturally present in the | | (state Total Coliform Rule) | <u>0</u> | | sample | | environment | | Fecal Coliform or E. coli
(state Total Coliform Rule) | (In the year) | 0 | A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive | 0 | Human and animal fecal waste | | E. coli (federal Revised Total Coliform Rule) | 1/01/2024 To
12/31/2024 | 0 | (a) | 0 | Human and animal fecal waste | (a) Routine and repeat samples are total coliform-positive and either is E. coli-positive or system fails to take repeat samples following E. coli-positive routine sample or system fails to analyze total coliform-positive repeat sample for E. coli. | TABLE 2 | – SAMPLING | G RESUI | LTS SE | ЮW | ING THE I | ETECTION | ON OF LEAD | O AND COPPER | |--|----------------|----------------------------|--|------------|------------------------------|---------------|---|--| | Lead and Copper
(complete if lead or copper
detected in the last sample set) | Sample
Date | No. of sample s collecte d | 90 ^{tt}
percen
leve
detect | ı
itile | No. sites
exceeding
AL | AL | PHG | Typical Source of Contaminant | | Lead (ppb) | 08/08/2023 | 5 | 7.9 | | 0 | 15 | 0 | Internal corrosion of household water
plumbing systems; discharges from
industrial manufacturers; erosion of
natural deposits | | Copper (ppm) | 08/08/2023 | 5 | ND | | 0 | 1.3 | N/A | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | | | TABLE 3 - | - SAMPL | ING R | ESU | LTS FOR | SODIUM A | AND HARDI | NESS | | Chemical or Constituent (and reporting units) | Sample
Date | Leve
Detect | - 1 | | Range of etections | MCL | PHG
(MCLG) | Typical Source of Contaminant | | Sodium (ppm) | 05/11/2022 | 21 | | ONE | E SOURCE | none | none | Salt present in the water and is generally naturally occurring | | Hardness (ppm) | 05/11/2022 | 52 | 52 ONE SOURCE | | none | none | Sum of polyvalent cations present
in the water, generally magnesium
and calcium, and are usually
naturally occurring | | | TABLE 4 – DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD | | | | | | | | | | Chemical or Constituent (and reporting units) | Sample
Date | Leve
Detec | 1 | | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | | ARSENIC (ppb) | 8/28/2023 | WELL 1 2.1
WELL 2 2.1 | | 4 | | 10 | 0.004 | EROSION OF NATURAL DEPOSITS; WATER ADDITIVE WHICH PROMOTES STRONG TEETH; DISCHARGE FROM FETILIZER AND ALUMINUM FACTORIES | | BARIUM (ppm) | 05/11/2022 | 0.08 | 0.083 ONE SOURCE | | 1 | 2 | DISCHARGE OF OIL, DRILLING
WASTES AND FROM METEL
REFINERIES: EROSION OF
NATURAL DEPOSITS. | | | (DBCP) (ug/L) | 01/16/2024 | Well 2 0 | Well 1 0.039
Well 2 0.038
Well 3 0.039 | | E SOURCE | 0.2
(ugl) | 0.2 | BANNED NEMATOCIDE THAT
MAY STILL BE PRESENT IN
SOILS DUE TO
RUNOFF/LEACHING FROM
FORMER USE ON SOYBEANS,
COTTON, VINEYARDS,
TOMATOES, AND TREE FRUIT | | FLUORIDE (ppm) | 05/11/2022 | 0.1 | 0.16 | | E SOURCE | 2.0 | 1 | EROSION OF NATURAILDEPOSITS; WATER ADDITIVE WHICH PROMOTS STRONG TEETH; DISCHARGE FROM FERILIZER AND ALUMINUM FACTORIES | | GROSS ALPHA (pci/l) | 05/11/2022 | 0.71 | 0.716 ON | | IE SOURCE | 15 | 0 | EROSION OF NATURAL DEPOSITS. | | Hexavalent chromium (ppb) | 10/07/2014 | 2.4 | 4 | ON | IE SOURCE | 10 | 0.20 | DISCHARGE FROM ELECTROPLATING FACTORIES ,LEATHER TANNERIES.WOOD PRESERVATION,CHEMICAL SYNTHESIS REFACTORY | | NONE DETECTED | | | | | | | |---|---|-------------------|----------------------|--------------------|------------------|--| | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of Detections | Notification Level | | Health Effects Language | | | TABLE 6 | – DETECTIC |
 OF UNREGUI | LATED CO | DNTAMINA | NTS | | | | | | | | | | TURBIDITY (units) | 1/20/2012 | 0.29 | ONE SOURCE | 5 | N/A | SOIL RUNOFF | | TOTAL DISSOLVED
SOLIDS (ppm) | 05/11/2022 | 190 | ONE SOURCE | 1000 | N/A | INDUSTRIAL WASTES RUNNOFF/LEACHING FROM NATURAL DEPOSITS | | SULFATE (ppm) | 05/11/2022 | 2.7 | ONE SOURCE | 500 | N/A | RUNOFF/LEASHING FROM
NATURAL DEPOSITS; | | SPECIFIC
CONDUCTANCE
(uS/cm) | 5/11/22 | 220 | ONE SOURCE | 1600 | N/A | SUBSTANCE THAT FORMS
IONS WHEN IN WATER;
SEAWATER INFLUENCE | | COLOR (units) | 5/11/2022 | 5 | ONE SOURCE | 15 | 15 | NATURALLY-OCCURRING
ORGANIC MATERIALS | | CHLORIDE (ppm) | 05/11/2022 | 19 | ONE SOURCE | 500 | N/A | RUNOFF /LEACHING FROM
NATURAIL DEPOSITS;
SEAWATER INFLUENCE | | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | | TABLE 5 – DETE | ECTION OF C | CONTAMINA | NTS WITH A <u>SE</u> | CONDAR | <u>Y</u> DRINKIN | IG WATER STANDARD | | XyKNES (ppb) | 8/24/2023 | ND | ONE SOURCE | 1.750 | 1.8 | DISCHARGE FROM PETROLEUM AND CHEMICAL FACTORIES; FUEL SOLVENT | | NITRATE (ppm) (as nitrate, no3) | WELL 1
WELL 2
WELL 3
1/16/2024 | 2.2
2.2
2.2 | 1.0 – 1.7 | 10 | 10 | RUNOFF AND LEACHING
FROM FERTILIZER USE;
LEACHING FROM SEPTIC
TANKS AND SEWAGE;
EROSION OF NATURAL
DEPOSITS | | | | | | | | PRODUCT ION AND TEXTILE
MANUFACTURING
FACILITIES; EROSION OF
NATURAL DEPOSITS | #### Additional General Information on Drinking Water Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). | 7 10 10 7 10 10 11 11 11 11 11 11 11 11 11 11 11 | |--| | Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health | | problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and | | components associated with service lines and home plumbing. [ARDAGH GLASS, INC.] is responsible for providing | | high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water | | has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to | | 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water | | and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you | | may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to | | minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4701) or at http://www.epa.gov/lead . | | | # Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement | VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT | | | | | | | | | |---|--|--|--|--|--|--|--|--| | Violation | Violation Explanation Duration Actions Taken to Correct the Violation Language | | | | | | | | | None | | | | | | | | | | | | | | | | | | | ### For Water Systems Providing Ground Water as a Source of Drinking Water | TABLE 7 – SAMPLING RESULTS SHOWING
FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLES | | | | | | | | |--|---------------|--|----|-----|------------------------------|--|--| | Microbiological Contaminants (complete if fecal-indicator detected) Total No. of Detections Sample Dates MCL (MCLG) (MCLG) [MRDLG] Typical Source of Contaminant | | | | | | | | | E. coli | (In the year) | | 0 | (0) | Human and animal fecal waste | | | | Enterococci | (In the year) | | TT | n/a | Human and animal fecal waste | | | | Coliphage | (In the year) | | TT | n/a | Human and animal fecal waste | | | #### Summary Information for Fecal Indicator-Positive Ground Water Source Samples, Uncorrected Significant Deficiencies, or Ground Water TT | | SPECIAL NOTICE OF FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLE | |------|---| | NONE | | | | | | | | | | | | | SPECIAL NOTICE FOR UNCORRECTED SIGNIFICANT DEFICIENCIES | | NONE | | | Pag | e 6 | of | ć | |-----|-----|----|---| | | | | | NONE | ^ | | | | | |------------------|-------------|------------------|--|----------------------------| | | VIOLA | TION OF GROUND W | VATER TT | | | TT Violation | Explanation | Duration | Actions Taken to Correct the Violation | Health Effects
Language | | NO
VIOLATIONS | | | | | #### For Systems Providing Surface Water as a Source of Drinking Water | TABLE 8 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES | | | | | |---|--|--|--|--| | Treatment Technique ^(a) (Type of approved filtration technology used) N/A | | | | | | Turbidity Performance Standards ^(b) (that must be met through the water treatment process) N/A | Turbidity of the filtered water must: N/A 1 - Be less than or equal to NTU in 95% of measurements in a month. 2 - Not exceed NTU for more than eight consecutive hours. 3 - Not exceed NTU at any time. | | | | | Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1. N/A | | | | | | Highest single turbidity measurement during the year | | | | | | Number of violations of any surface water treatment requirements | | | | | - (a) A required process intended to reduce the level of a contaminant in drinking water. - (b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements. #### **Summary Information for Violation of a Surface Water TT** | VIOLATION OF A SURFACE WATER TT | | | | | | | |---|--|--|--|--|--|--| | TT Violation Explanation Duration Actions Taken to Correct the Violation Language | | | | | | | | NONE | | | | | | | ## **Summary Information for Operating Under a Variance or Exemption** | |
 | | |------|------|------| | | | | | | | | |
 |
 |
 | | | | | | | | | | | |
 | | | | | | | | | | |
 |
 | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | |
 | | | | | | |