

Clean, Safe Water That Our Customers Can Trust

The State Water Resources Control Board Division of Drinking Water (DDW) requires community water systems to publish and make available an annual Consumer Confidence Report to provide background on the quality of your water and to show compliance with federal and state drinking water standards.

۲

This 2021 Annual Water Quality Report is a snapshot of the quality of local water supplies in the Santa Clarita Valley during 2020. Included are details about where your water comes from, what it contains and how it compares to strict Federal and State standards. We are committed to providing you with information because informed customers are our best allies.

Our Promise to Our Customers: Clean, Safe Water That You Can Trust

۲

Dear Customer:

The past year has brought all of us challenges and uncertainty. One thing that our customers can rest assured about is that our team of essential workers continues to provide you with clean, safe water day and night.

SCV Water and Los Angeles Waterworks District #36 have worked together to provide you with our 2021 Water Quality Report that explains:

Where your water comes from

How we treat and monitor it thousands of times per year

How we ensure its safety when it reaches your tap

As you read this report, you'll also find important information on our Agency's future planning efforts, programs and initiatives.

We appreciate playing such a large role in the fabric of the Santa Clarita Valley and being a trusted source for your water supply.

Matthew G. Stone General Manager | SCV Water

Russ Bryden Assistant Deputy Director | LACWD #36

' Wate

WHERE DOES OUR WATER COME FROM?

SANTA CLARITA VALLEY SUPPLY PORTFOLIO

SCV Water's water supply comes from four main sources, imported water, groundwater, recycled water and water banking (storage). Leveraging multiple sources of water ensures our customers always have water when they need it.

۲

GROUNDWATER

More than a quarter (17,300 acre-feet) of our water comes from local, sustainable groundwater sources. These underground water aquifers store water that naturally comes from precipitation.

IMPORTED WATER

We rely on imported water from the State Water project for nearly 75 percent (48,300 acre-feet) of our water needs. This water journeys hundreds of miles from the Sierra Nevada's in Northern California before reaching the Santa Clarita Valley.

RECYCLED WATER

Less than one percent of our water currently comes from recycled water. Future plans will expand our recycled water use for outdoor irrigation to ensure our customers have a reliable water source for years to come.

STORED (BANKED) WATER

Our Agency also stores (banks) 141,000 acre-feet of water in nearby Kern County. This water is available to us in times of need, such as during a drought or emergency.

SCV WATER SNAPSHOT

Serving our community safe, reliable water that meets or surpasses rigorous state and federal standards is a hallmark of our agency. It takes a lot of testing, storage reservoirs, and pipes, along with our talented team of water professionals, to make sure water is delivered to your homes 24/7.

75.000 Service Connections

195 Square Miles of Service Area

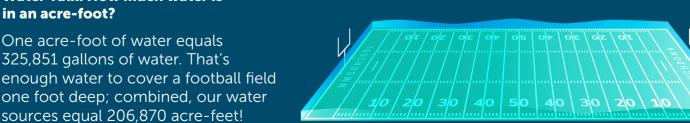
in an acre-foot?

20.000 Water Tests Per Year

141,000 Acre-feet Water Stored in Kern County

95 Local Water Storage Tanks

Gallons of Water Storage Capacity


879 Miles Pipeline

Water Talk: How much water is

One acre-foot of water equals 325,851 gallons of water. That's

Gallons of Water Served to Customers

SCV Water | 3

۲

Z

()

PLANNING FOR OUR FUTURE

SCV Water is undertaking several multi-year water planning efforts to ensure our customers have access to reliable water today and tomorrow. These water plans and programs will enhance our water reliability, quality, environmental sustainability and delivery

۲

Visit yourSCVwater.com/planning for more info.

GROUNDWATER SUSTAINABILITY PLAN

The Santa Clarita Valley Groundwater Sustainability Agency (SCV-GSA) responsibly manages our vital groundwater, which is stored underground in the Santa Clara River Valley East Subbasin. By 2022, our team will finalize our Groundwater Sustainability Plan (as required by the Sustainable Groundwater Management Act) that is tailored to the resources and needs of our community to maintain and improve resource management. The goal of this plan is to demonstrate sustainable groundwater management within 20 years.

RECYCLED WATER PLANNING

Recycled water is a renewable resource and has been used for outdoor irrigation in our service area since 2003. Using recycled water extends our drinking water supply, reduces our reliance on costly imported water and expands our local water supply. Our team is working on a recycled water management plan to guide future efforts.

۲

URBAN WATER MANAGEMENT PLAN

SCV Water's team is preparing our Urban Water Management Plan (UWMP) update. This state-required update will direct our long-term resource planning to guarantee adequate water supplies are available to meet future water needs.

WATER SHORTAGE CONTINGENCY PLAN

To ensure that we have adequate water supplies now and in the future, SCV Water is preparing our Water Shortage Contingency Plan. This plan is required by the state and will improve water conservation and water shortage planning, especially during a drought or catastrophic event.

PFAS TREATMENT

Like many communities throughout the nation, very small amounts of PFAS (per- and polyfluoralkyl substances) are in our water. SCV Water, and other agencies, did not put these chemicals in our water but over time these chemicals enter our water supply through manufacturing, product use and wastewater discharge – which are all potential sources for PFAS. When it comes to addressing PFAS in our water supply, SCV Water is using a three-pronged approach:

TESTING: SCV proactively monitors the quality of the water from our wells to ensure it meets the state's regulations for PFAS, which are some of the most stringent in the nation.

TREATMENT: Using new, innovative strategies and proven treatment options, SCV Water is taking immediate steps to address PFAS in our groundwater.

TRANSPARENCY: From our website to social media and community meetings to direct mail, SCV Water is making sure our customers have the most current information.

()

4 | SCV Water

WATER YOU CAN TRUST

SCV Water's 2021 Water Quality Report

Your health and safety is our top priority. Before reaching your tap, our water must withstand rigorous rounds of treating, monitoring and testing thousands of times per year.

Protecting Our Water Source

We regularly sample where our water comes from (called a Source Water Assessment). We work with scientists and experts from the state to ensure that any contaminants found in our water are proactively addressed.

Cleaning Our Water

Once water travels from the source to one of our treatment plants, we use multiple processes to treat and clean our water. Here harmful organisms, like viruses and bacteria, are removed or inactivated.

Sampling and Testing Our Water

To ensure our water system is working as it should and that water meets or surpasses all state and federal health and safety standards, we conduct more than 20,000 water tests each year.

Water Talk: What is a PPM, PPB, PPT?

Throughout our water quality report, you will see contaminants measured by parts per million or Milligrams/Liter (mg/L), parts per billion or Micrograms/Liter (μ g/L), and parts per trillion or Nanogram/Liter (ng/L). Here's a breakdown of what these measurements translate to in real life.

Part Per Million or Milligrams/Liter = 1 drop in a hot tub

Part Per Billion or Micrograms/Liter = 1 drop

Part Per Trillion or Nanogram/Liter = 1 drop in a 6-acre lake

in an Olympic size swimming pool

IMPORTANT INFO FROM THE EPA ON DRINKING WATER

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the U.S. EPA's Safe Drinking Water Hotline (800) 426-4791.

NOTE: All of the test results in this report were analyzed in 2020 unless noted otherwise. Any chemical not listed in this report was not detected or was detected below the detection level for purposes of reporting. Your local water supplier is in compliance with all drinking water regulations unless a specific violation is noted.

()

MICROBIOLOGICAL

۲

Microbial contaminants, such as viruses and bacteria, can be naturally occurring or result from urban storm water runoff, sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Drinking water is tested throughout the distribution systems weekly for Total Coliform (TC) bacteria. TC are naturally occurring in the environment and are indicators for finding possible disease-causing contamination of a drinking water system. The MCL for TC is 5% of all monthly tests showing positive results for larger systems and two positive samples per month in smaller systems. If TC is positively identified through routine testing, the water is further analyzed for Escherichia coli (E. coli) which indicates the potential of fecal contamination. No E. coli was detected in any drinking water system in the Santa Clarita Valley (SCV) last year and no water system was out of compliance with the Total Coliform Rule. Additional tests did not detect the waterborne parasites Cryptosporidium parvum or Giardia lamblia in any sample of treated imported surface water.

All water systems are required to comply with the state Total Coliform Rule as well as the federal Revised Total Coliform Rule that took effect April 1, 2016. The new federal rule protects public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., TC and E. coli bacteria). The U.S. Environmental Protection Agency (USEPA) anticipates greater public health protections as the new rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist, and to correct them.

METALS AND SALTS

Metals and salts are required to be tested in groundwater once every three years and in surface water every month. Naturally occurring salts are found in both surface and groundwater. These include chloride, fluoride, nitrate, nitrite, calcium, magnesium, potassium and sodium. Collectively, these are referred to as Total Dissolved Solids (TDS). Calcium and magnesium make up what is known as water hardness which can cause scaling from the precipitates. Fluoride is not added to your drinking water. Any fluoride detection is naturally occurring in the groundwater.

Nitrate in drinking water at levels above 10 mg/L (as nitrogen) is a health risk for infants less than six months of age. These levels can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. These same nitrate levels may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant woman and those with certain enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. Nitrate was not detected above the MCL in any sample.

LEAD AND COPPER

Every three years, each water system is required to sample for lead and copper at specific customer taps as part of the Lead and Copper Rule. Lead and copper are also tested in source water supplies (i.e., groundwater and surface water). In 2019, SCV Water also tested all public K-12 schools in the service area. No traces of lead were detected in any source waters in the Santa Clarita Valley by any of the local water systems.

Infants and young children are typically more vulnerable to lead in drinking water than the general population, and serious health problems could result. Your water system is responsible for providing high quality drinking water but cannot control the materials used in customer plumbing components. It is possible

DRINKING WATER SOURCE ASSESSMENT AND PROTECTION

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application and septic systems.
- Radioactive contaminants that can be naturally occurring or be the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (SWRCB) Division of Drinking Water

ORGANIC COMPOUNDS

Organic chemical contaminants including synthetic and volatile organic compounds (VOC) are by-products of industrial processes and petroleum production. Treated imported surface water and local groundwater wells are tested at least annually for VOCs. Trichloroethylene (TCE) and Tetrachloroethylene (PCE) were found in trace amounts (below the MCL) at a few locations. Consumption of water containing TCE or PCE in excess of the MCL over many years may lead to liver problems and an increased risk of cancer.

TURBIDITY

Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of water quality. High turbidity can hinder the effectiveness of disinfectants. Furthermore, at the treatment plants, turbidity is monitored because it is a good indicator of the effectiveness of our filtration systems.

6 | SCV Water

that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing.

۲

If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested by a private laboratory. If your water has been sitting for several hours, you can flush your tap for 30 seconds to 2 minutes before using tap water. Additional information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the USEPA's Safe Drinking Water Hotline (800) 426-4791 or at www.epa.gov/lead.

(DDW) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide protection for public health. Additional information on bottled water is available on the California Department of Public Health website (cdph.ca.gov/programs/CEH/DFDCS/Pages/ fdbprograms/foodsafetyprogram/water.aspx).

Every water division completed the Drinking Water Source Assessment and Protection (DWSAP) program for existing groundwater sources in 2002. DWSAPs are also completed for each new groundwater well placed into service by water systems. Each DWSAP looks at vulnerability to contamination and assesses potential sources of contamination from sources such as: dry cleaners, auto repair shops, gas stations, medical facilities, schools and other facilities located in the vicinity of each groundwater source.

An assessment of the drinking water source, Well E17, for the Valencia Water Division's service area was completed May 2020 as part of the permitting process for the new well. There are no known contaminant sources detected in the water supply. Well E17 is considered most vulnerable to chemical/ petroleum pipeline and electrical/electronic manufacturing that is not associated with any detectable contaminants. The well is located west of The Old Road and north of Highway 126, off Commerce Center Drive. For more information regarding DWSAPs, contact your local supplier or visit the following website: waterboards.ca.gov/drinking_water/certlic/drinkingwater/DWSAP.html. You may request a summary of the assessment be sent to you by contacting the SWRCB DDW district engineer at (818) 551-2004.

SCV WATER SOURCES OF WATER SUPPLY

SCV Water provides drinking water from multiple sources. State Water Project water is imported from Northern California, is treated through one of our two treatment plants and then enters the distribution system. Groundwater is pumped from two natural underground aquifers, the Alluvial and the Saugus Formation. Recycled water is also provided for some irrigation uses. These sources are served in various proportions to service areas within the Newhall Water Division (NWD), Santa Clarita Water Division (SCWD), and Valencia Water Division (VWD). In addition, SCVWA provides treated water to Los Angeles County Waterworks District #36.

LOS ANGELES COUNTY WATERWORKS DISTRICT #36 serves approximately 5,200 customers located in Hasley Canyon and Val Verde, through 1,350 metered connections. The District's water supply is composed of 100% groundwater from one well pumping from the Saugus formation beneath the District's service area and 0% of imported water.

5/19/2021 11:50:23 AM

District 36 will begin work to replace an aged water main in the unincorporated community of Val Verde, on Del Valle Road, Hasley Canyon Road to Lincoln Avenue. Crews will install a new water main to enhance water conservation and improve water supply throughout the district. The work is scheduled to begin October 2021 through March 2022.

SCV WATER - NEWHALL WATER DIVISION serves customers located in the Castaic, Newhall, Pinetree and Tesoro del Valle areas. In 2020, Castaic customers received 29% imported water and 71% local groundwater, Newhall customers received 26% imported water and 74% local groundwater. Pinetree customers received 100% imported water, and Tesoro del Valle customers received 100% imported water.

SCV WATER - SANTA CLARITA WATER DIVISION provides water to a portion of the City of Santa Clarita and unincorporated areas of Los Angeles County including Saugus, Canyon Country, and Newhall. Customers received approximately 84% imported water and 16% local groundwater in 2020.

SCV WATER - VALENCIA WATER DIVISION supplies water to customers in Valencia, Stevenson Ranch, and parts of Castaic, Saugus, and Newhall. In 2020, customers received 73% imported water, 25% local groundwater and 2% recycled water (delivered to large landscape customers).

CHEMICALS IN THE NEWS

PERCHLORATE

۲

Perchlorate is an inorganic chemical used in solid rocket propellant, fireworks, explosives and a variety of industries. It usually gets into drinking water as a result of environmental contamination from historic industrial operations that used, stored, or disposed of perchlorate and its salts. Perchlorate has been shown to interfere with uptake of iodide by the thyroid gland, and thereby reduce the production of thyroid hormones leading to adverse effects associated with inadequate hormone levels.

A known perchlorate contaminant plume has been identified and several wells have tested positive for perchlorate. In October 2007, the DDW adopted an MCL of 6 ug/L for perchlorate. DDW issued an amendment to SCVWA – Imported Division's Domestic Water Supply Permit on December 30, 2010, authorizing the use of the perchlorate-treatment facility and, on January 25, 2011, SCVWA – Imported Division introduced the

ABBREVIATIONS

AL = Action Level
DLR = Detection Limit for Reporting
MRL = Minimum Reporting Level
ESFP = Earl Schmidt Filtration Plant
MCL = Maximum Contaminant Level
MCLG = Maximum Contaminant Level Goal
mg / L = milligrams / Liter
ug / L = micrograms / Liter
ng / L = nanograms / Liter
uS / cm = microsiemens / centimeter
NA = Not Analyzed / Not Applicable
NTU = Nephlometric Turbidity Units
pCi / L = picocuries / Liter
PHG = Public Health Goal

treated water into the distribution system in full compliance with the requirements of its amended water-supply permit.

۲

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS) Per- and polyfluoroalkyl substances (PFAS) are a group of chemicals that are resistant to heat, water, and oil. PFAS have been classified by the United States Environmental Protection Agency (USEPA) as an emerging contaminant on the national landscape.

The EPA has not yet established enforceable drinking water standards, called maximum contaminant levels (MCL), for these substances, but they have issued a Health Advisory Level of 70 nanograms per liter (ng/L) for a combined level of two of the more prevalent PFAS substances, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). In addition, the California State Water Resources Control Board – Division of Drinking Water (DDW) has set notification and response levels for PFOA and PFOS. A notification level (NL) is a health based advisory level for constituents lacking an MCL and requires public notification for constituents exceeding these values. A response level (RL) is a non-regulatory, precautionary, health-based measure, where DDW recommends removing a water source from service, blend or provide treatment if that option is available.

In June 2018, DDW set initial NLs for PFOA (14 ng/L) and PFOS (13 ng/L) and a combined response level for PFOA and PFOS of 70 ng/L. In March 2019, DDW issued a series of orders related to the sampling for PFAS chemicals. After an initial round of monitoring, SCV Water voluntarily removed one well from service, which exceeded the combined RL. Then in February 2020, DDW revised the NLs and adopted individual RLs for PFOA (10 ng/L) and PFOS (40 ng/L) based on a running annual average. SCV Water responded by voluntarily removing 14 additional wells from service.

Since February 2020, additional wells were voluntarily removed from service as ongoing monitoring revealed PFOA concentrations approaching the RL. In December, 2020 SCV Water brought the first ion exchange treatment for PFAS online, bringing three wells back into service. Currently, SCV Water is in various stages of design and construction for PFAS treatment plants to return more of these wells back into service.

Sample results tabulated in the table of this report are for the 2020 calendar year. However, SCV Water is continuing PFAS monitoring in wells. Data in the table may reflect wells that are no longer in service. For more information and resources on PFAS, visit yourSCVwater.com/pfas.

TT = Treatment Technique	
RL = Response Level	
* SWRCB considers 50 pCi/L	to be the level of concern for Beta particles
¹ Refer to the first Import col in the specific rows shown	umn for values left blank in Pinetree and Tesoro, except
² Depending on annual temp	peratures
³ There are three MCLs for th	is parameter:
The first is the recommend	led long term MCL
The second is the upper lo	ng term MCL
The third is the short term	MCL
⁴ The NL for Boron = 1000 u	g/L or 1 mg/L
⁵ There is currently no MCL f was withdrawn on Septemb	or hexavalent chromium. The previous MCL of 10ug/L er 11, 2017.

SCV Water | 7

CONSTITUENTS	Units	NL	RL	CCRDL		rita Valley Wat Import Division <i>i</i> ater and % Sui			rita Valley Wat Import Division drate Treatmen		Santa Clarita Valley Water Agency Santa Clarita Water Division			
INORGANICS		Range			NGE	Typical	Range		Typical					
					Мілімим	Махімим		Мілімим	Махімим		Minimum	Махімим		
Perfluorobutanesulfonic Acid (PFBS)	ng/L			4	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>20.0</td><td>7.6</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>20.0</td><td>7.6</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>20.0</td><td>7.6</td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td>20.0</td><td>7.6</td></ccrdl<>	20.0	7.6	
Perfluorononanoic Acid (PFNA)	ng/L			4	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<>	<ccrdl< td=""></ccrdl<>	
Perfluorodecanoic Acid (PFDA)	ng/L			4	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<>	<ccrdl< td=""></ccrdl<>	
Perfluorotetradecanoic Acid (PFTA)	ng/L			4	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<>	<ccrdl< td=""></ccrdl<>	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ng/L			4	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<>	<ccrdl< td=""></ccrdl<>	
4,8-Dioxa-3H-Perfluorononanoic Acid (Adona)	ng/L			2	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<>	<ccrdl< td=""></ccrdl<>	
Perfluoroheptanoic Acid (PFHpA)	ng/L			4	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>9.2</td><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>9.2</td><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>9.2</td><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td>9.2</td><td><ccrdl< td=""></ccrdl<></td></ccrdl<>	9.2	<ccrdl< td=""></ccrdl<>	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	ng/L			4	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<>	<ccrdl< td=""></ccrdl<>	
Perfluorododecanoic Acid (PFDoA)	ng/L			4	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<>	<ccrdl< td=""></ccrdl<>	
Perfluorotridecanoic Acid (PFTrDA)	ng/L			4	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<>	<ccrdl< td=""></ccrdl<>	
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	ng/L			2	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<>	<ccrdl< td=""></ccrdl<>	
Perfluorooctane Sulfonic Acid (PFOS)	ng/L	6.5	40	4	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>18.0</td><td>7.5</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>18.0</td><td>7.5</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>18.0</td><td>7.5</td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td>18.0</td><td>7.5</td></ccrdl<>	18.0	7.5	
Perfluorooctane Sulfonic Acid (PFHxS)	ng/L			4	<ccrdl< td=""><td>4.6</td><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>12.0</td><td>5.5</td></ccrdl<></td></ccrdl<></td></ccrdl<>	4.6	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>12.0</td><td>5.5</td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td>12.0</td><td>5.5</td></ccrdl<>	12.0	5.5	
N-Methyl Perfluorooctanesulfonamidoacetic Acid	ng/L			4	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<>	<ccrdl< td=""></ccrdl<>	
Perfluorohexanoic Acid (PFHxA)	ng/L			4	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>24.0</td><td>4.9</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>24.0</td><td>4.9</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>24.0</td><td>4.9</td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td>24.0</td><td>4.9</td></ccrdl<>	24.0	4.9	
Perfluoroundecanoic Acid (PFUnA)	ng/L			4	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<>	<ccrdl< td=""></ccrdl<>	
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	ng/L			2	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""></ccrdl<></td></ccrdl<>	<ccrdl< td=""></ccrdl<>	
Perfluorooctanoic Acid (PFOA)	ng/L	5.1	10	4	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>26.0</td><td>6.0</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>26.0</td><td>6.0</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td><ccrdl< td=""><td>26.0</td><td>6.0</td></ccrdl<></td></ccrdl<>	NA	NA	NA	<ccrdl< td=""><td>26.0</td><td>6.0</td></ccrdl<>	26.0	6.0	

RADIOLOGICAL TESTS

Radioactive compounds can be found in both ground and surface waters and can be naturally occurring or be the result of oil and gas production and mining activities. Testing is conducted for two types of radioactivity: alpha and beta. If none is detected at concentrations above five picoCuries per liter (pCi/L) no further testing is required. If it is detected above 5 pCi/L, the water must be checked for uranium and/or radium. Monitoring for radionuclides can be different for each groundwater well. Because of this, not all data may be from the 2020 calendar year.

WATER QUALITY DEFINITIONS

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The USEPA/ Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants and are available from the USEPA's Safe Drinking Water Hotline (800) 426-4791.

USEPA, DDW and the California Environmental Protection Agency (CalEPA) set goals and legal standards for the quality of drinking water. These standards are intended to protect consumers from contaminants in drinking water. Most of the standards are based on the concentration of contaminants, but a few are based on a Treatment Technique (TT), a required process intended to reduce the level of a contaminant in drinking water. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (800) 426-4791.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG) or Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by Cal/ EPA. MCLGs are set by the USEPA.

Primary Drinking Water Standard (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Detection Limit for Purposes of Reporting (DLR): The smallest concentration of a contaminant that can be measured and reported. DLRs are set by the DDW (same as MRL, Minimum Reporting Level, set by USEPA).

Consumer Confidence Report Detection Level (CCRDL): The smallest concentration of a contaminant that can be measured and reported, taking into consideration changes in analytical methods.

8 SCV Water

	A CLARITA VALLEY WATER AGENCY Valencia Water Division Castaic				RITA VALLEY WA HALL WATER DIV NEWHALL			rita Valley Wa hall Water Div Pinetree ¹			rita Valley Wa Hall Water Div Tesoro ¹		Los Angeles County Waterworks District #36				
F	Range	Typical	Ra	NGE	Typical	Ra	NGE	Typical	R/	ANGE	Typical	Range		Typical	Range		Typical
MINIMUM	Махімим	TYPICAL	Мілімим	Махімим	T YPICAL	Мілімим	Махімим	T YPICAL	Мілімим	Maximum	TYPICAL	MINIMUM	Махімим		Мілімим	Махімим	I YPICAL
<ccrdl< td=""><td>20.0</td><td>7.8</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>10.0</td><td>5.0</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	20.0	7.8	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>10.0</td><td>5.0</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>10.0</td><td>5.0</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>10.0</td><td>5.0</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>10.0</td><td>5.0</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	10.0	5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td>13.0</td><td>3.6</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	13.0	3.6	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td>25.0</td><td>5.8</td><td><ccrdl< td=""><td>5.7</td><td><ccrdl< td=""><td><ccrdl< td=""><td>4.3</td><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	25.0	5.8	<ccrdl< td=""><td>5.7</td><td><ccrdl< td=""><td><ccrdl< td=""><td>4.3</td><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	5.7	<ccrdl< td=""><td><ccrdl< td=""><td>4.3</td><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>4.3</td><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	4.3	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td>21.0</td><td>6.1</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>32.0</td><td>11.5</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	21.0	6.1	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>32.0</td><td>11.5</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>32.0</td><td>11.5</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>32.0</td><td>11.5</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>32.0</td><td>11.5</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	32.0	11.5	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td>39.0</td><td>8.5</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>6.6</td><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	39.0	8.5	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>6.6</td><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>6.6</td><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>6.6</td><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>6.6</td><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	6.6	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA
<ccrdl< td=""><td>31.0</td><td>9.4</td><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>4.7</td><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	31.0	9.4	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>4.7</td><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td><ccrdl< td=""><td>4.7</td><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td><ccrdl< td=""><td>4.7</td><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<></td></ccrdl<>	<ccrdl< td=""><td>4.7</td><td><ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<></td></ccrdl<>	4.7	<ccrdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></ccrdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Notification Level (NL): State guidelines developed by DDW that address the concentration of a contaminant which, if exceeded, triggers public notification.

Response Level (RL): If a chemical is present in drinking water that is provided to consumers at concentrations considerably greater than the notification level, DDW recommends that the drinking water system take the source out of service. **Treatment Technique (TT)**: A required process intended to reduce the level of a contaminant in drinking water.

Primary Drinking Water Contaminants: Contaminants associated with the protection of public health and that have enforceable standards.

Secondary Drinking Water Contaminants: Contaminants associated with aesthetic considerations such as taste, color and odor, and that have non-enforceable guidelines.

DISINFECTION BY-PRODUCTS

SCV Water - Imported Division uses ozone and chloramine to disinfect its water while the water divisions use various forms of chlorine and chloramine to disinfect their groundwater sources. Disinfection By-Products (DBPs), which include Total Trihalomethanes (TTHMs) and Haloacetic Acids (HAA5), are generated by the interaction between naturally occurring organic matter and disinfectants such as chlorine. TTHMs and HAA5 are measured at multiple locations throughout the distribution system. Each location is averaged once per quarter and reported as a running average by location. The DBP bromate is formed when the primary disinfectant ozone is applied converting bromide to bromate. Bromate is measured weekly in the surface water treatment plant and compliance is based on a running annual average.

UNREGULATED CONTAMINANT MONITORING RULE

The USEPA requires utilities to sample for emerging contaminates as part of the Unregulated Contaminant Monitoring Rule (UCMR). Every five (5) years the USEPA prepares a list of unregulated contaminants for drinking water suppliers to analyze. UCMR results are then used to assist in the development of future drinking water regulations. We recently completed the fourth round of UCMR sampling (UCMR 4) between 2018-2020. UCMR5 monitoring will occur between 2023-2025. For more information, please contact your local water supplier or visit the USEPA website epa.gov/dwucmr/ learn-about-unregulated-contaminant-monitoring-rule.

PARAMETERS/ CONSTITUENTS	Units	MCL (AL) (RL)	PHG (MCLG)	DLR (MRL)	Santa Clarita Valley Water Agency Import Division (% Groundwater and % Surface Water)				Import Division orate Treatmen		Santa Clarita Valley Water Agency Santa Clarita Water Division		
	ļ	(112)	ļ	ļ		NGE	AFACE WATER	Ra	NGE	Typical	Range		
INORGANICS					MINIMUM	Махімим	Typical	MINIMUM	Махімим		Мілімим	Махімим	Typical
Aluminum	мg/L	1	0.6	0.05	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.2</td><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.2</td><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.2</td><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.2</td><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.2</td><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>0.2</td><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>0.2</td><td><dlr< td=""></dlr<></td></dlr<>	0.2	<dlr< td=""></dlr<>
Arsenic	ug/L	10	0.004	2	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>2.3</td><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>2.3</td><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>2.3</td><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>2.3</td><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>2.3</td><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>2.3</td><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>2.3</td><td><dlr< td=""></dlr<></td></dlr<>	2.3	<dlr< td=""></dlr<>
Fluoride ²	мg/L	2	1	0.1	0.1	0.2	0.2	0.1	0.3	0.2	0.3	0.6	0.4
Barium	MG/L	1	2	0.1	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.1</td><td>0.1</td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.1</td><td>0.1</td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.1</td><td>0.1</td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.1</td><td>0.1</td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>0.1</td><td>0.1</td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>0.1</td><td>0.1</td></dlr<></td></dlr<>	<dlr< td=""><td>0.1</td><td>0.1</td></dlr<>	0.1	0.1
Nitrate (as Nitrogen)	MG/L	10	10	0.4	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>3.4</td><td>4.1</td><td>3.7</td><td>3.3</td><td>7.5</td><td>4.7</td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>3.4</td><td>4.1</td><td>3.7</td><td>3.3</td><td>7.5</td><td>4.7</td></dlr<></td></dlr<>	<dlr< td=""><td>3.4</td><td>4.1</td><td>3.7</td><td>3.3</td><td>7.5</td><td>4.7</td></dlr<>	3.4	4.1	3.7	3.3	7.5	4.7
Nitale (as Nitrogen)	MG/L	10	10	0.4	NDEN	VDEIX	VDEN	5.4	4.1	5.7	5.5	7.5	4.7
ORGANICS													
Trichloroethylene (TCE)	ug/L	5	1.7	0.5	<dlr< td=""><td>0.6</td><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	0.6	<dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA	NA	NA	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>
Tetrachloroethylene (PCE)	ug/L	5	0.06	0.5	<dlr< td=""><td>0.9</td><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	0.9	<dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA	NA	NA	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>
	00,2		0.00	0.5	- OLIV	0.5	-Ben				-BER	-BER	-BER
DISINFECTION BY-PRODUCTS													
Bromate RVWTP	ug/L	10	0.1	5	<dlr< td=""><td>5.4</td><td>4.0</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></dlr<>	5.4	4.0	NA	NA	NA	NA	NA	NA
Bromate ESFP	ug/L	10	0.1	5	<dlr< td=""><td>2.9</td><td>2.6</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></dlr<>	2.9	2.6	NA	NA	NA	NA	NA	NA
Haloacetic Acids (HAA5)	ug/L	60	.(0)	1.0	<dlr< td=""><td>8.9</td><td>5.0</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td>9.8</td><td>5.3</td></dlr<></td></dlr<>	8.9	5.0	NA	NA	NA	<dlr< td=""><td>9.8</td><td>5.3</td></dlr<>	9.8	5.3
Trihalomethanes, Total (TTHMs)	ug/L	80	.(0)	1.0	8.5	47.0	20.0	NA	NA	NA	10.0	47.0	19.2
MICROBIOLOGICAL													
Coliform & Positivo Samples / # of Positive-	%	5	0		0	0	0	NA	NA	NA	0	1	0
Coliform % Positive Samples / # of Positives	/0	C	U			U	U	INA	INA	INA	U	1	U
CLARITY / TURBIDITY													
Surface Water Only RVWTP	NTU	TT = 1 NTU	None		NA	0.35	NA	NA	NA	NA	NA	NA	NA
	1	TT = 95% of Samples < 0.2 NTU			100	NA	NA	NA	NA	NA	NA	NA	NA
Surface Water Only ESFP	NTU	TT = 1 NTU	None		NA	0.31	NA	NA	NA	NA	NA	NA	NA
		TT = 95% of Samples < 0.2 NTU			100	NA	NA	NA	NA	NA	NA	NA	NA
RADIOLOGICAL		•	0	0					о. 				<u>.</u>
Alpha Activity, Gross	PCI/L	15	(0)	3	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>7.1</td><td>3.6</td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>7.1</td><td>3.6</td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>7.1</td><td>3.6</td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>7.1</td><td>3.6</td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>7.1</td><td>3.6</td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>7.1</td><td>3.6</td></dlr<></td></dlr<>	<dlr< td=""><td>7.1</td><td>3.6</td></dlr<>	7.1	3.6
Beta Activity, Gross	PCI/L	50*	(0)	3	<dlr< td=""><td>3.5</td><td><dlr< td=""><td><dlr< td=""><td>3.3</td><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td></dlr<></td></dlr<></td></dlr<></td></dlr<>	3.5	<dlr< td=""><td><dlr< td=""><td>3.3</td><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>3.3</td><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td></dlr<></td></dlr<>	3.3	<dlr< td=""><td>NA</td><td>NA</td><td>NA</td></dlr<>	NA	NA	NA
Radium 228	PCI/L		0.019	1	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>
Uranium	PCI/L	20	0.43	1	<dlr< td=""><td>1.2</td><td><dlr< td=""><td><dlr< td=""><td>2.2</td><td><dlr< td=""><td>4.4</td><td>4.4</td><td>4.4</td></dlr<></td></dlr<></td></dlr<></td></dlr<>	1.2	<dlr< td=""><td><dlr< td=""><td>2.2</td><td><dlr< td=""><td>4.4</td><td>4.4</td><td>4.4</td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>2.2</td><td><dlr< td=""><td>4.4</td><td>4.4</td><td>4.4</td></dlr<></td></dlr<>	2.2	<dlr< td=""><td>4.4</td><td>4.4</td><td>4.4</td></dlr<>	4.4	4.4	4.4
Year of Analysis						2020			2020			2020	
LEAD AND COPPER											90th Percentile	NO. OF SITES TESTED	NO. OF SITES ABOVE THE AL
Copper - Consumer Taps	ug/L	(1300)	300	50	NA	NA	NA	NA	NA	NA	400	50	0
Lead - Consumer Taps	ug/L	(15)	0.2	5	NA	NA	NA	NA	NA	NA	5.6	50	1
Year of Analysis					NA	NA	NA	NA	NA	NA		2018	
SECONDARY STANDARDS					Rai	NGE	Typical	Ra	NGE	Typical	RA	NGE	Typical
					Minimum	Махімим		Minimum	Махімим		Minimum	Махімим	
Chloride ³	мg/L	250/500/600			50	58	52	40	49	42	67	140	97
Color	Units	15		5	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>
Odor-Threshold	TON	3		1	1	1	1	1	1	1	1	1	1
Sulfate ³	MG/L	250/500/600		1	44	53	49	150	180	160	100	210	148
Turbidity	NTU	5		0.1	0.1	0.1	0.1	0.1	0.1	0.1	<dlr< td=""><td>6.0</td><td>1.0</td></dlr<>	6.0	1.0
"Total Dissolved Solids ³ "	MG/L	500/1000/1500			210	280	240	480	610	540	590	860	732
Conductivity ³	uS / см	900/1600/2200		20	330	410	370	610	840	700	930	1300	1144
Manganese	ug/L	50		20	<dlr <dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr 1200</dlr </td><td><dlr 111</dlr </td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></dlr 	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr 1200</dlr </td><td><dlr 111</dlr </td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr 1200</dlr </td><td><dlr 111</dlr </td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr 1200</dlr </td><td><dlr 111</dlr </td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr 1200</dlr </td><td><dlr 111</dlr </td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr 1200</dlr </td><td><dlr 111</dlr </td></dlr<></td></dlr<>	<dlr< td=""><td><dlr 1200</dlr </td><td><dlr 111</dlr </td></dlr<>	<dlr 1200</dlr 	<dlr 111</dlr
Iron	ug/L	300		10	<dfk< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>1200</td><td>111</td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dfk<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>1200</td><td>111</td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>1200</td><td>111</td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>1200</td><td>111</td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>1200</td><td>111</td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>1200</td><td>111</td></dlr<></td></dlr<>	<dlr< td=""><td>1200</td><td>111</td></dlr<>	1200	111
ADDITIONAL TESTS													
Chromium, hexavalent (CrVI)5	ug/L	50	0.02	1	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>1.2</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>1.2</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>1.2</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>1.2</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	1.2	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>
Year of Analysis (CrVI)	1	N/A				2020			2020			2017	
Boron ⁴	мg/L		Ì	0.1	0.15	0.18	0.17	0.28	0.33	0.30	0.5	1.4	0.9
Calcium	MG/L				26	32	29	90	100	96	84	140	109
Magnesium	мg/L				11	13	12	18	21	20	20	51	30
Perfluorooctanesulfonic acid (PFOS)	NG/L	40		2.0	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>18.0</td><td>8.1</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>18.0</td><td>8.1</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>18.0</td><td>8.1</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>18.0</td><td>8.1</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>18.0</td><td>8.1</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>18.0</td><td>8.1</td></mrl<></td></mrl<>	<mrl< td=""><td>18.0</td><td>8.1</td></mrl<>	18.0	8.1
Perfluorooctanoic acid (PFOA)	NG/L	10		2.0	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>26.0</td><td>7.1</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>26.0</td><td>7.1</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>26.0</td><td>7.1</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>26.0</td><td>7.1</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>26.0</td><td>7.1</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>26.0</td><td>7.1</td></mrl<></td></mrl<>	<mrl< td=""><td>26.0</td><td>7.1</td></mrl<>	26.0	7.1
Potassium	мg/L				2.6	2.8	2.7	2.7	3.3	2.9	2.2	5.5	3.8
Sodium	мg/L				43	50	47	65	74	69	88	130	105
	1	1	1	i	1		420	700	750	320	290	490	396
Hardness as CaCO3	мg/L				110	130	120	300	350	520	290	490	550
Hardness as CaCO3 pH	mg/L Units				110 7.7	130 8.5	8.2	7.6	7.9	7.7	7.4	7.8	7.5

____|

۲

4


	Santa Clarita Valley Water Agency Valencia Water Division				rita Valley Wa hall Water Di Castaic		Santa Clarita Valley Water Agency Newhall Water Division Newhall				RITA VALLEY WA HALL WATER DIV PINETREE ¹			rita Valley Wa hall Water Div Tesoro ¹		Los Angeles County Waterworks District #36			
Ť	Rai	NGE	Tana	Ra	NGE	Tana	R/	NGE	Tarra	RA	NGE	Tana	RA	NGE	Tana	R	ANGE	т	
	Мілімим	Махімим	Typical	MINIMUM	Махімим	Typical	Minimum	Махімим	Typical	Мілімим	Махімим	Typical	Мілімим	Махімим	Typical	Minimum	Махімим	Typical	
	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA	NA	NA	NA	NA	NA	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>	
Γ	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA	NA	NA	NA	NA	NA	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>	
	0.2	0.9	0.6	0.5	0.5	0.5	0.3	0.4	0.4	NA	NA	NA	NA	NA	NA	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>	
	<dlr< td=""><td>0.1</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	0.1	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA	NA	NA	NA	NA	NA	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>	
	1.6	6.0	3.1	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>2.5</td><td>7.2</td><td>4.9</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>1.9</td><td>1.9</td><td>1.9</td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>2.5</td><td>7.2</td><td>4.9</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>1.9</td><td>1.9</td><td>1.9</td></dlr<></td></dlr<>	<dlr< td=""><td>2.5</td><td>7.2</td><td>4.9</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>1.9</td><td>1.9</td><td>1.9</td></dlr<>	2.5	7.2	4.9	NA	NA	NA	NA	NA	NA	1.9	1.9	1.9	
	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA	NA	NA	NA	NA	NA	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>	
	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA	NA	NA	NA	NA	NA	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>	
ŀ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 12.0	NA	NA	NA	NA	
	<dlr 7.7</dlr 	9.3 49.0	5.5 26.3	0.0 5.5	5.5 12.0	2.4 8.9	<dlr <dlr< td=""><td>7.0 21.0</td><td>1.5 5.4</td><td>4.1 14.0</td><td>7.9 28.0</td><td>6.0 18.5</td><td>6.1 19.0</td><td>12.0 47.0</td><td>8.2 32.3</td><td><dlr 5.2</dlr </td><td><dlr 9.1</dlr </td><td><dlr 6.6</dlr </td></dlr<></dlr 	7.0 21.0	1.5 5.4	4.1 14.0	7.9 28.0	6.0 18.5	6.1 19.0	12.0 47.0	8.2 32.3	<dlr 5.2</dlr 	<dlr 9.1</dlr 	<dlr 6.6</dlr 	
L	1.1	45.0	20.5	5.5	12.0	0.9	VDER	21.0	5.4	14.0	20.0	10.5	15.0	47.0	52.5	J.Z	5.1	0.0	
Г	0	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
ľ																			
Γ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
ľ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
┞	21.0	75	010						10								010		
_	<dlr< td=""><td>7.5</td><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>4.4</td><td>4.7</td><td>4.6</td><td>5</td><td>11</td><td>8</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	7.5	<dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>4.4</td><td>4.7</td><td>4.6</td><td>5</td><td>11</td><td>8</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA	NA	NA	4.4	4.7	4.6	5	11	8	NA	NA	NA	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>	
	3.8 <dlr< td=""><td>5.0 <dlr< td=""><td>4.4 <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>4.5 <dlr< td=""><td>5.7 <dlr< td=""><td>5.1 <dlr< td=""><td>NA NA</td><td>NA NA</td><td>NA NA</td><td><dlr <dlr< td=""><td><dlr <dlr< td=""><td><dlr <dlr< td=""></dlr<></dlr </td></dlr<></dlr </td></dlr<></dlr </td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	5.0 <dlr< td=""><td>4.4 <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>4.5 <dlr< td=""><td>5.7 <dlr< td=""><td>5.1 <dlr< td=""><td>NA NA</td><td>NA NA</td><td>NA NA</td><td><dlr <dlr< td=""><td><dlr <dlr< td=""><td><dlr <dlr< td=""></dlr<></dlr </td></dlr<></dlr </td></dlr<></dlr </td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	4.4 <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>4.5 <dlr< td=""><td>5.7 <dlr< td=""><td>5.1 <dlr< td=""><td>NA NA</td><td>NA NA</td><td>NA NA</td><td><dlr <dlr< td=""><td><dlr <dlr< td=""><td><dlr <dlr< td=""></dlr<></dlr </td></dlr<></dlr </td></dlr<></dlr </td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>4.5 <dlr< td=""><td>5.7 <dlr< td=""><td>5.1 <dlr< td=""><td>NA NA</td><td>NA NA</td><td>NA NA</td><td><dlr <dlr< td=""><td><dlr <dlr< td=""><td><dlr <dlr< td=""></dlr<></dlr </td></dlr<></dlr </td></dlr<></dlr </td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>4.5 <dlr< td=""><td>5.7 <dlr< td=""><td>5.1 <dlr< td=""><td>NA NA</td><td>NA NA</td><td>NA NA</td><td><dlr <dlr< td=""><td><dlr <dlr< td=""><td><dlr <dlr< td=""></dlr<></dlr </td></dlr<></dlr </td></dlr<></dlr </td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>4.5 <dlr< td=""><td>5.7 <dlr< td=""><td>5.1 <dlr< td=""><td>NA NA</td><td>NA NA</td><td>NA NA</td><td><dlr <dlr< td=""><td><dlr <dlr< td=""><td><dlr <dlr< td=""></dlr<></dlr </td></dlr<></dlr </td></dlr<></dlr </td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA <dlr< td=""><td>NA <dlr< td=""><td>NA <dlr< td=""><td>4.5 <dlr< td=""><td>5.7 <dlr< td=""><td>5.1 <dlr< td=""><td>NA NA</td><td>NA NA</td><td>NA NA</td><td><dlr <dlr< td=""><td><dlr <dlr< td=""><td><dlr <dlr< td=""></dlr<></dlr </td></dlr<></dlr </td></dlr<></dlr </td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA <dlr< td=""><td>NA <dlr< td=""><td>4.5 <dlr< td=""><td>5.7 <dlr< td=""><td>5.1 <dlr< td=""><td>NA NA</td><td>NA NA</td><td>NA NA</td><td><dlr <dlr< td=""><td><dlr <dlr< td=""><td><dlr <dlr< td=""></dlr<></dlr </td></dlr<></dlr </td></dlr<></dlr </td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA <dlr< td=""><td>4.5 <dlr< td=""><td>5.7 <dlr< td=""><td>5.1 <dlr< td=""><td>NA NA</td><td>NA NA</td><td>NA NA</td><td><dlr <dlr< td=""><td><dlr <dlr< td=""><td><dlr <dlr< td=""></dlr<></dlr </td></dlr<></dlr </td></dlr<></dlr </td></dlr<></td></dlr<></td></dlr<></td></dlr<>	4.5 <dlr< td=""><td>5.7 <dlr< td=""><td>5.1 <dlr< td=""><td>NA NA</td><td>NA NA</td><td>NA NA</td><td><dlr <dlr< td=""><td><dlr <dlr< td=""><td><dlr <dlr< td=""></dlr<></dlr </td></dlr<></dlr </td></dlr<></dlr </td></dlr<></td></dlr<></td></dlr<>	5.7 <dlr< td=""><td>5.1 <dlr< td=""><td>NA NA</td><td>NA NA</td><td>NA NA</td><td><dlr <dlr< td=""><td><dlr <dlr< td=""><td><dlr <dlr< td=""></dlr<></dlr </td></dlr<></dlr </td></dlr<></dlr </td></dlr<></td></dlr<>	5.1 <dlr< td=""><td>NA NA</td><td>NA NA</td><td>NA NA</td><td><dlr <dlr< td=""><td><dlr <dlr< td=""><td><dlr <dlr< td=""></dlr<></dlr </td></dlr<></dlr </td></dlr<></dlr </td></dlr<>	NA NA	NA NA	NA NA	<dlr <dlr< td=""><td><dlr <dlr< td=""><td><dlr <dlr< td=""></dlr<></dlr </td></dlr<></dlr </td></dlr<></dlr 	<dlr <dlr< td=""><td><dlr <dlr< td=""></dlr<></dlr </td></dlr<></dlr 	<dlr <dlr< td=""></dlr<></dlr 	
	3.1	3.5	3.3	<dlr< td=""><td>1.2</td><td>1.1</td><td><dlr< td=""><td>2.7</td><td>1.2</td><td>2.4</td><td>9.3</td><td>6.7</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	1.2	1.1	<dlr< td=""><td>2.7</td><td>1.2</td><td>2.4</td><td>9.3</td><td>6.7</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	2.7	1.2	2.4	9.3	6.7	NA	NA	NA	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>	
	5.1	2020	5.5	(DEI)	2018-2019		(DER	2015 - 2018	1.2	£.1	2019	0.7	101	101	104	(DEIT	2019	NDEN.	
Г	90тн	No. of Sites	No. of Sites	90тн	No. of Sites	No. of Sites	90тн	No. of Sites	NO. OF SITES	90тн	No. of Sites	No. of Sites	90тн	No. of Sites	No. of Sites	90тн	NO. OF SITES	NO. OF SITE	
Ļ	Percentile	Tested	ABOVE THE AL	Percentile	Tested	ABOVE THE AL	Percentile	Tested	ABOVE THE AL	Percentile	Tested	ABOVE THE AL	Percentile	Tested	ABOVE THE AL	Percentile	Tested	Above the A	
	270	50	0	220	20	0	500	30	1	340	21	0	200	20	0	180	23	0	
	<dlr< td=""><td>50</td><td>0</td><td><dlr< td=""><td>20</td><td>0</td><td>12</td><td>30</td><td>2</td><td><dlr< td=""><td>21</td><td>1</td><td><dlr< td=""><td>20</td><td>0</td><td>0.7</td><td>23</td><td>0</td></dlr<></td></dlr<></td></dlr<></td></dlr<>	50	0	<dlr< td=""><td>20</td><td>0</td><td>12</td><td>30</td><td>2</td><td><dlr< td=""><td>21</td><td>1</td><td><dlr< td=""><td>20</td><td>0</td><td>0.7</td><td>23</td><td>0</td></dlr<></td></dlr<></td></dlr<>	20	0	12	30	2	<dlr< td=""><td>21</td><td>1</td><td><dlr< td=""><td>20</td><td>0</td><td>0.7</td><td>23</td><td>0</td></dlr<></td></dlr<>	21	1	<dlr< td=""><td>20</td><td>0</td><td>0.7</td><td>23</td><td>0</td></dlr<>	20	0	0.7	23	0	
2019 2018 2018 2020														2020					
Range			Range		Typical	R/	INGE	Typical	Ra	NGE	Typical	RA	NGE	Typical	R	ANGE	TYPICAL		
Ļ	MINIMUM	Махімим	THOLE	MINIMUM	Махімим	THOLE	MINIMUM	Махімим		MINIMUM	Махімим	THICKE	Мілімим	Махімим	THICK	Minimum	Махімим	THICKE	
Ļ	32	120	83	74	79	76	45	49	47	NA	NA	NA	NA	NA	NA	16	16	16	
	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA	NA	NA	NA	NA	NA	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>	
	1 68	1 460	1 244	1	1 97	1	200	250	225	NA NA	NA NA	NA NA	NA	NA	NA	<5 83	3 83	<5 83	
	0.1	460 0.7	0.4	77 <dlr< td=""><td>0.2</td><td>86 <dlr< td=""><td>200</td><td>250 0.2</td><td>225 0.2</td><td>NA</td><td>NA</td><td>NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>0.3</td><td>1.3</td><td>0.6</td></dlr<></td></dlr<>	0.2	86 <dlr< td=""><td>200</td><td>250 0.2</td><td>225 0.2</td><td>NA</td><td>NA</td><td>NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>0.3</td><td>1.3</td><td>0.6</td></dlr<>	200	250 0.2	225 0.2	NA	NA	NA	NA NA	NA NA	NA NA	0.3	1.3	0.6	
ŀ	400	1000	754	370	450	413	580	750	665	NA	NA	NA	NA	NA	NA	300	300	300	
ŀ	670	1500	1143	660	750	713	840	1100	970	NA	NA	NA	NA	NA	NA	410	410	410	
ľ	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	NA	NA	NA	NA	NA	NA	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>	
ĺ	<dlr< td=""><td>140</td><td>30</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>12</td><td>12</td><td>12</td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	140	30	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>12</td><td>12</td><td>12</td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>12</td><td>12</td><td>12</td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>12</td><td>12</td><td>12</td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>12</td><td>12</td><td>12</td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>12</td><td>12</td><td>12</td></dlr<></td></dlr<>	<dlr< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>12</td><td>12</td><td>12</td></dlr<>	NA	NA	NA	NA	NA	NA	12	12	12	
ſ	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>1.6</td><td>1</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>1.6</td><td>1</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>1.6</td><td>1</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>1.6</td><td>1</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td><dlr< td=""><td>1.6</td><td>1</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""><td>1.6</td><td>1</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td>1.6</td><td>1</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<></td></dlr<>	1.6	1	NA	NA	NA	NA	NA	NA	<dlr< td=""><td><dlr< td=""><td><dlr< td=""></dlr<></td></dlr<></td></dlr<>	<dlr< td=""><td><dlr< td=""></dlr<></td></dlr<>	<dlr< td=""></dlr<>	
	0.3	2020 1.0	0.5	0.2	2018	0.2	0.2	2018	0.2	NA	NA	NA	NA	NA	NA	NA	2019 NA	NA	
	69	1.0	0.5	40	52	48	82	140	0.2	NA	NA	NA	NA	NA	NA	NA 27	NA 27	NA 27	
┝	17	46	35	40	20	18	15	32	24	NA	NA	NA	NA	NA	NA	5	5	5	
	<mrl< td=""><td>25.0</td><td>5.8</td><td><mrl< td=""><td>5.2</td><td>2.0</td><td><mrl< td=""><td>4.3</td><td>2.1</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mrl<></td></mrl<></td></mrl<>	25.0	5.8	<mrl< td=""><td>5.2</td><td>2.0</td><td><mrl< td=""><td>4.3</td><td>2.1</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mrl<></td></mrl<>	5.2	2.0	<mrl< td=""><td>4.3</td><td>2.1</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mrl<>	4.3	2.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	<mrl< td=""><td>31.0</td><td>9.4</td><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>4.7</td><td>2.3</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mrl<></td></mrl<></td></mrl<></td></mrl<></td></mrl<>	31.0	9.4	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>4.7</td><td>2.3</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mrl<></td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td><mrl< td=""><td>4.7</td><td>2.3</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""><td>4.7</td><td>2.3</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mrl<></td></mrl<>	<mrl< td=""><td>4.7</td><td>2.3</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mrl<>	4.7	2.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	1.6	5.3	3.6	2.8	3.1	3.0	2.2	2.4	2.3	NA	NA	NA	NA	NA	NA	2	2	2	
	49	130	85	63	71	67	56	76	66	NA	NA	NA	NA	NA	NA	71	71	71	
		5.60	409	160	210	190	270	480	375	NA	NA	NA	NA	NA	NA	86	86	86	
	240	560	403	100	210	190	270	400	5/ 5	1473	11/1	10/4	101	1.07.1	101	00			
-	240 7.3	560 7.9	7.8	8.1	8.2	8.1	7.9	8.1	8.0	NA	NA	NA	NA	NA	NA	7.3	7.9	7.6	

____|

4

۲

LOS ANGELES COUNTY WATERWORKS DISTRICT NO. 36 (GOVERNED BY LOS ANGELES COUNTY BOARD OF SUPERVISORS)

Bing Hua, P.E. | (626) 300-3337 bhua@dpw.lacounty.gov lacwaterworks.org

۲

Board of Supervisor Meetings

Tuesdays at 9:30 a.m. (On Tuesdays following a Monday holiday, meetings begin at 1 p.m.) Kenneth Hahn Hall of Administration 500 West Temple St., Room 381B Los Angeles, CA 90012

SANTA CLARITA VALLEY WATER AGENCY (SCV WATER)

Jeff Koelewyn

(661) 297-1600 x223 jkoelewyn@scvwa.org yourSCVwater.com **Ryan Bye** (661) 388-4988 rbye@scvwa.org

Board of Directors Meetings

First and Third Tuesday of each month at 6:30 p.m. (Dates may vary. Visit www.yourSCVwater.com for an up-to-date Board meeting schedule) Rio Vista Administration Building 27234 Bouquet Canyon Road Santa Clarita, CA 91350

DEVELOPING A DROUGHT-RESILENT WATER SUPPLY TO MEET OUR NEEDS

Our SCV Water team is hard at work developing strategies for drought-resilient water supplies and water-wise initiatives to ensure we can meet our community's water needs today and for years to come.

But we need your help! We must all must do our part to save Mother Nature's finest resource: H20. We thank you for your continued stewardship of our water supply, and we're committed to being a resource to our customers, so we can all work together to

reduce our water use.

Visit yourSCVwater.com for tips, tools and information on how you can be more water-efficient.

SCV WATER'S NEWHALL, SANTA CLARITA AND VALENCIA DIVISIONS

Customer Care 24631 Avenue Rockefeller Valencia, CA 91355

Water Resources and Outreach

26501 Summit Circle Santa Clarita, CA 91350

Connect with us on social media

