

ROWLAND WATER DISTRICT

BOARD OF DIRECTORS

Robert W. Lewis President John E. Bellah Director

Anthony J. Lima Director Teresa P. Rios Vice President Szu Pei Lu-Yang Director Thomas L. Coleman General Manager David Warren Assistant General Manager Rosemarie Perea Director of Administrative Svcs.

July 9, 2020

Ms. Shu-Fang Orr State Water Resources Control Board Drinking Water Field Operations Branch 500 N. Central Ave., Suite 500 Glendale, CA 91203

Re: 2019 CCR and CCR Certification Form

Dear Ms. Orr:

Enclosed is the Rowland Water District Consumer Confidence Report for 2019, the Consumer Confidence Report Certification Form, and the postcard that was delivered to all service addresses within the District boundaries.

The Water Quality Emergency Notification Plan (WQENP) was previously uploaded to the DRINC portal on June 23, 2020.

Should you require further information or documentation, please advise.

Thank you.

Yours truly,

DAVE WARREN

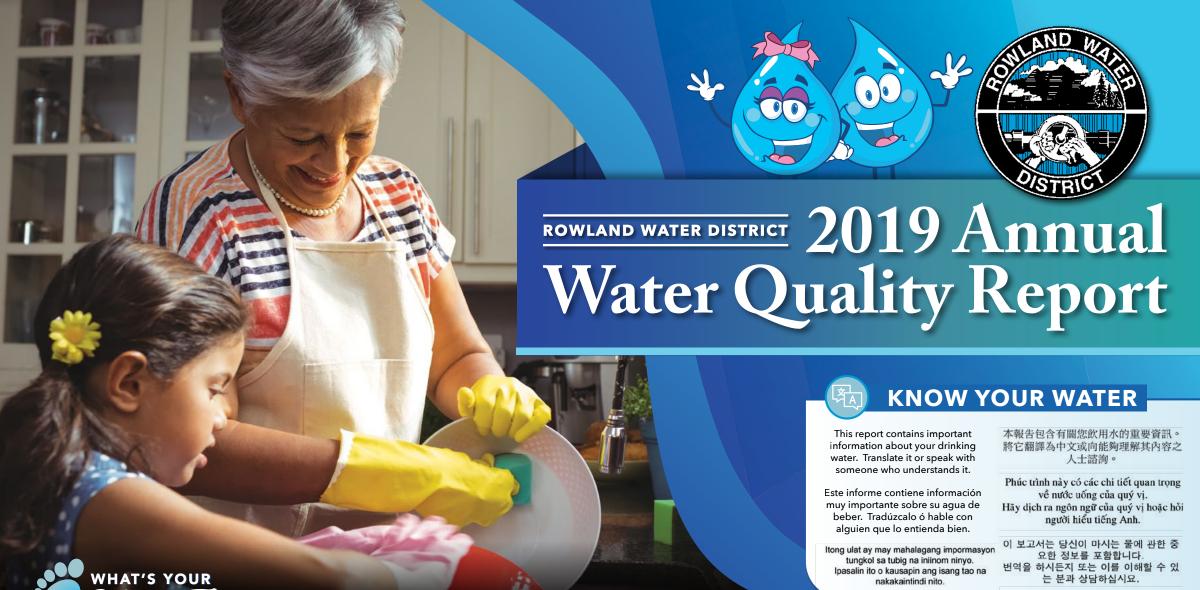
Assistant General Manager

Enclosures

Cc: Mr. Kun Cheng, Associate Sanitary Engineer w/enclosures

Consumer Confidence Report Certification Form

(To be submitted with a copy of the CCR)


Water Syst	tem Name:	Rowland Water District								
Water Syst	tem Number:	1910194								
6/26/2020 Further, the compliance	e system certif	date) to cuites that the	by certifies that its Consumer Confidence Report was distributed on astomers (and appropriate notices of availability have been given). information contained in the report is correct and consistent with the sly submitted to the State Water Resources Control Board, Division of							
Certified b	y: Name:	_	Dave Warren							
	Signatu	ıre:	Dal							
	Title:	_	Assistant General Manager							
	Phone	Number:	(562) 697-1726 Date: 7/9/2020							
	rize report deli apply and fill-i		nd good-faith efforts taken, please complete this page by checking all propriate:							
CCR	R was distribute	ed by mail	or other direct delivery methods (attach description of other direct							
CCR Delir must	very of the Control to the second terms of the	ed using el nsumer Con second page								
			ed to reach non-bill paying consumers. Those efforts included the							
foll	owing methods		following URL: www.rowlandwaterquality.org							
	Mailing the Advertising Publication published no Posted the C Delivery of as apartmen	CCR to post the availab of the CCI otice, include CCR in publi multiple costs, business	stal patrons within the service area (attach zip codes used) ility of the CCR in news media (attach copy of press release) R in a local newspaper of general circulation (attach a copy of the ding name of newspaper and date published) lic places (attach a list of locations) upies of CCR to single-billed addresses serving several persons, such tes, and schools organizations (attach a list of organizations)							
	Publication	of the CCR	In the electronic city newsletter or electronic community newsletter y of the article or notice)							
	media outlet	ts utilized)	ent of CCR availability via social media outlets (attach list of social Fwitter, Facebook, Instagram, Constant Contact email to 9184 contacts ther methods used)							
☐ For	,		00,000 persons: Posted CCR on a publicly-accessible internet site at							
	following URL									
	0	-	Delivered the CCR to the California Public Utilities Commission							

Consumer Confidence Report Electronic Delivery Certification

Water systems utilizing electronic distribution methods for CCR delivery must complete this page by checking all items that apply and fill-in where appropriate. X Water system mailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available website where it can be viewed (attach a copy of the mailed CCR notification). URL: www.rowlandwaterquality.org Water system emailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available site on the Internet where it can be viewed (attach a copy of the emailed CCR notification). URL: www. Water system emailed the CCR as an electronic file email attachment. Water system emailed the CCR text and tables inserted or embedded into the body of an email, not as an attachment (attach a copy of the emailed CCR). Requires prior DDW review and approval. Water system utilized other electronic delivery method that meets the direct delivery requirement. Provide a brief description of the water system's electronic delivery procedures and include how the water system ensures delivery to customers unable to receive electronic delivery.

This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c) of the California Code of Regulations.

Reference Document for Electronic Delivery of CCRs, Appendix B Revised January 2019

www.RowlandWater.com

Ensuring Your Water Supply Remains Safe and Reliable

The COVID-19 pandemic has dramatically changed the way we go about our daily lives, here in America and around the world. In California, the effects of the virus have been felt in a myriad of ways, but thankfully one thing has remained constant here in our District as we face this unprecedented unknown: your safe drinking water supply.

All public water systems in California regularly test for bacteria and other substances, then report the findings of all tests to state regulators and to customers through an annual Water Quality Report issued by July 1 each year. At Rowland Water District, that means we test more than 1,000 times yearly. In addition, all of the water sourced by Rowland Water District is treated before it enters the system, and our most recent water quality report shows that this water not only meets, but exceeds state and federal health and safety standards. So you can rest assured that your water quality and supply remains unaffected by COVID-19, and strict state regulations will continue to ensure that we are able to provide you with safe, clean drinking water.

We do not expect the recent outbreak to have any impact on your water service and delivery, and neither do our neighboring agencies. You should know that water is NOT a source for the virus, and according to the Centers for Disease Control and Prevention it has NOT been detected in any drinking-water supplies to date.

Rowland Water District has contingency plans in place to ensure the continued delivery of water in emergency situations. We will continue operations 24-hours a day, seven days a week to make sure you receive the highest level of service you have come to expect from Rowland Water District. We will continue to make sure every drop from every faucet meets the highest drinking water standards in the nation.

Additionally, this is a critical time for each of us to do our part to protect our community. Here are some specific measures you can take to protect yourself and your loved ones:

- Avoid contact with people who are sick
- Practice social distancing, keeping at least 6 feet between yourself and others
- Wash your hands with soap and water regularly. Alcohol hand sanitizers are also effective
- Try not to touch your eyes, nose, and mouth with unwashed hands
- Stay home when you are sick (and keep sick children home from school)
- Clean and disinfect frequently touched objects and surfaces

Even during this unparalleled time of change, we will not waver in our responsibility to you, our partners in the community. We will continue to make sure the water you use in your home meets the highest drinking water standards in the nation, because a safe, dependable water supply is something you can always count on from Rowland Water District, now and in the future.

Tom Celemon

Tom Coleman, General Manager



Rowland Water District transports, maintains, and delivers water to close to 58,000 people in portions of the cities of Industry and West Covina, as well as in the unincorporated areas of Hacienda Heights, La Puente, and Rowland Heights.

The District relies mostly on imported drinking water supplies from the Colorado River and from Northern California, which are delivered by our wholesalers, Metropolitan Water District of Southern California and Three Valleys Municipal Water District. The District also receives local groundwater from the Main San Gabriel Groundwater Basin.

We also have eight booster pump stations, consisting of 22 booster pumps pumping water to various elevations throughout our service area. We continue to provide our water users with unique opportunities to self-educate, and are bringing awareness to the fact that water should never be taken for granted.

ROWLAND WATER IS HERE FOR YOU

District works to minimize economic hardships across service area -

We understand that this unprecedented public health crisis has left some of our loyal customers in a difficult financial situation, and we are here to help. In order to provide assistance to those trying to cope with a loss of income during this time, Rowland Water District will temporarily suspend water shutoffs due to non-payment and late payment fees. We hope that this measure will provide some much-needed peace of mind during this outbreak.

Rowland Water District is proud to provide a safe and reliable drinking water supply. Frequent hand washing is a critical practice in preventing the transmission of COVID-19 and we will ensure that all of our customers continue to have access to this vital resource.

Customers who have fallen behind on water bills are encouraged to call Rowland Water District at (562) 697-1726 for information on how to set up a payment plan.

CUSTOMER SERVICE COMMITMENT CONTINUES DESPITE PANDEMIC CONCERNS

District works to minimize economic hardships across service area

Rowland Water District is committed to maintaining high-quality water and excellent customer service, as well as protecting public health. We are fully prepared to respond to this pandemic and to maintain operations to avoid any service disruptions.

To do our part to prevent the spread of the virus, we have temporarily closed our offices to the public, and our administrative staff is working from home, when possible. The dedicated essential personnel who maintain the critical water system continue to work, so we can ensure safe water and uninterrupted service to the more than 58,000 people who rely on the Rowland Water District every day.

Rowland Water District is closely monitoring local public health recommendations related to the COVID-19 pandemic, and we are also monitoring updates around the clock from our state health department, as well as the Centers for Disease Control and the World Health Organization.

As an additional step to further protect the health of our community, the District is encouraging customers to pay bills online at ipn.paymentus.com/rotp/rowd?lang=en or via phone (855) 288-0679. This will allow us to limit person-to-person contact with employees and other members of the public.

For the latest information on our office closures, visit www.RowlandWater.com or call (562) 697-1726 during regular business hours.

MINI SOLAR CHALLENGE FUELS LEARNING FOR ELEMENTARY STUDENTS

A new science component in Rowland Water District's popular education program inspired hundreds of fifth- and sixth-grade students to learn about renewable energy by building a mini solar-powered boat.

The Mini Solar Challenge aligns with grade-appropriate standards in the areas of Science, Technology, Engineering and Math (STEM). About 300 students from four schools in the District's service area participated in the event held earlier this year.

In addition to building their boat and racing it against other students' boats, participants were asked to write a report and create a presentation on renewable vs. consumable energy. Medals were awarded to the top three students in each category during virtual award ceremonies in April.

THE MINI SOLAR CHALLENGE WILL BE OFFERED AGAIN DURING THE UPCOMING SCHOOL YEAR, FOR UP TO 10 CLASSES.

The mini challenge is based on another District co-sponsored event - the annual high school-level Solar Cup - in which teams from across Southern California build full-size boats and race them at Lake Skinner in the Temecula Valley.

For more information about Rowland Water District's free water education programs, materials, presentations, activities and financial support for teachers, visit **www.rowlandwater.com/education**.

DISTRICT TAKES ACTION ON WATER CONSERVATION WITH NEW WEBSITE

As water use restrictions continue to be mandated by state government, it's important for customers to understand the changes they can make in their own homes to achieve conservation goals.

With that in mind, Rowland Water District has launched an exciting, innovative website focused on providing user-friendly information and resources related to water conservation. At **yourwaterfootprint.org**, consumers can find the tools they need to monitor their 'water footprint' and learn how to immediately change water use behaviors. The online platform is just one component of a larger educational campaign that includes conservation-related bill inserts, handouts, flyers, educational programs for kids, and more.

The interactive website features an online water footprint calculator to determine total household water use and to identify exactly where consumers have opportunities to reduce water use.

There is also a kid-friendly section where students can learn more about their water usage, and an interactive educational picture to further explore the places where they can reduce their water footprint.

To learn more, visit YourWaterFootprint.org

In December 2002, Metropolitan Water District co assessment of its Colorado River and State Water Pro

SACRAMENTO


SAN JOSEO

SAN FRANCISCO

In December 2002, Metropolitan Water District completed a source water assessment of its Colorado River and State Water Project supplies. Colorado River water is considered to be most vulnerable to the effects of recreation, urban and stormwater runoff, increasing urbanization in the watershed, and wastewater. The State Water Project is considered to be most vulnerable to the effects of urban and stormwater runoff, wildlife, agriculture, recreation, and wastewater. A copy of the assessment can be obtained by contacting Metropolitan Water District at (213) 217-6850. In addition to these sources, Rowland Water District stores supplemental groundwater in the Main San Gabriel Basin and Central Basin.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. Environmental Protection Agency's (U.S. EPA's) Safe Drinking Water Hotline at (800) 426-4791.

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground it dissolves naturally-occurring minerals and, in some cases, radioactive materials, and can pick up substances resulting from the presence of animals or from human activity.

WATER QUALITY

Strict Standards for your Drinking Water

Rowland Water District is committed to providing safe, high quality drinking water to consumers. We continue to maintain a high-level of public confidence by keeping customers well-informed regarding the quality of their water supply while continually working to improve the water treatment process and protect our precious water resources.

Our drinking water is in compliance with all health and safety standards established by the United States Environmental Protection Agency (USEPA) and the State Water Resources Control Board (SWRCB). Each year, the District tests nearly 1,000 water samples for regulated and unregulated contaminants and impurities, and results consistently show that the samples not only meet, but exceed federal standards for drinking water quality.

California water systems are now required to monitor for per- and polyfluoroalkyl substances (PFAS). PFAS is a collective term for a large group of synthetic chemicals that include perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). Governor Gavin Newsom recently signed AB 756, which gives the State Water Resources Control Board the authority to require water systems to monitor for the compounds beginning January 1, 2020 with notification levels of 6.5 parts per trillion (ppt) for PFOS and 5.1 ppt for PFOA.

These synthetic contaminants have been detected in some water supplies, particularly around landfills and airports. Although PFAS has not been found in our water supplies above the new notification levels, we will continue to test for these compounds and other impurities, making sure every drop meets the highest drinking water standards in the nation.

The presence of contaminants in drinking water does not necessarily indicate that the water poses a health risk.

Information about water contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

INFORMATION ABOUT YOUR WATER

approximately 58,000 residents in the unincorporated portions of Rowland Heights, La Puente, Hacienda Heights, and the cities of Industry and West Covina.

The District is governed by a publicly elected Board of Directors with five members, each representing a specific division of the service area. Maintaining the highest quality and most reliable drinking water supply, as well as establishing District policy and the annual budget, are the Board's primary functions.

Established in 1953, Rowland Board meetings are scheduled Water District originally supplied at 6 p.m. on the second Tuesday office at 3021 Fullerton Road, Rowland Heights, CA 91748. Agendas are posted at the District office 72 hours in advance of the meeting and on the District's website at www.rowlandwater.com.

> Comprehensive water quality reporting is done on an annual basis and describes the sources of potable water, as well as the supply's composition and how it compares to state and federal health and safety standards.

Rowland Water District

committed to providing safe drinking water and strives to water to about 200 ranchers of each month (unless otherwise maintain the highest level of public and farmers, and now serves noted) and held at the District confidence within the community. The District works hard to keep customers well informed on all issues related to water supply, quality and conservation.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE

Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, that can be naturally-occuring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

Radioactive contaminants that can be naturally-occuring or the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of Drinking Water (DDW) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. DDW regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Some people may be more vulnerable to contaminants found in drinking water than the general population. Immuno-compromised persons, such as those with cancer undergoing chemotherapy, people who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/ Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available by calling the Safe Drinking Water Hotline at (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Rowland Water District is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

2019 SAMPLE RESULTS

DDIMARY STANDARDS

For specific questions regarding this report or any additional questions related to District drinking water, please contact Roy Frausto, Engineering & Compliance Manager, at (562) 697-1726 or email info@rowlandwater.com.

Unless otherwise noted, the data presented in this table is from testing completed January 1 - December 31, 2019. The state requires the District to monitor for certain contaminants less than once per year because the concentrations are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old. Unregulated contaminant monitoring helps EPA and the DDW determine where certain contaminants occur and whether they need to be regulated.

PRIMARY STANDARDS												
Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water		
CLARITY												
Combined Filter Effluent (CFE)	TT	NA	NA	Highest	0.04	0.076	0.20		NTU	Soil Runoff		
Turbidity (a)	TT	NA	NA	% <0.3	100%	100%	100%	ND	%	CON IXUNON		
MICROBIOLOGICAL												
Total Coliform Bacteria (b) (Total Coliform Rule)	5%	(0)	NA			RWD Distribution System-Wid	de - 0%		%	Naturally present in the environment		
Fecal Coliform and E.coli (c) (Total Coliform Rule)	(c)	(0)	NA			RWD Distribution System-Wid	de - 0%		(c)	Human and animal fecal waste		
Heterotrophic Plate Count (e)	TT	NA	(1)	Range Average	ND – 1 ND	ND	ND	NC	CFU/mL	Naturally present in the environment		
INORGANIC CHEMICALS												
Aluminum (d)	1	0.6	0.05	Range Average	ND – 0.110 0.122	ND – 0.100 ND	ND	NC	ppm	Residue from water treatment process; natural deposits; erosion		
Arsenic	10	.004	2	Range Average	ND	ND	ND	2.0 – 2.9 2.4	ppb	Erosion of natural deposits: glass & electronics production wastes: runoff		
David and	_	0	0.4	Range	ND	IND	ND	0.12 – 0.13		Discharge of oil drilling waste and from		
Barium	1	2	0.1	Average	ND	ND	ND	0.125	ppm	metal refineries; erosion of natural deposits		
Copper (d) (f)	AL=1.3	0.3	0.05		RWD Distribution System-Wide — 35 Samples Collected RWD Distribution System-Wide — 90th Percentile Level = 0.255 RWD Distribution System-Wide — Samples Exceeding Action Level = 0					Internal corrosion of household pipes; erosion of natural deposits		
Fluoride	2	1	0.1	Range Average	0.6 - 0.9 0.7	ND	0.41 - 0.59 0.5	0.26 - 0.27 0.27	ppm	Erosion of natural deposits; water additive that promotes strong teeth		
Lead (f)	AL=15	0.2	5	Average	0.7 ND 0.5 0.27 RWD Distribution System-Wide - 35 Samples Collected RWD Distribution System-Wide - 90th Percentile Level = ND RWD Distribution System-Wide - Samples Exceeding Action Level = 0				ppb	Internal corrosion of household pipes; erosion of natural deposits		
Nitrate (as N)	10	10	0.4	Range Average	0.5	ND	1.6 – 3.5 2.56	3.3 – 5.3 4	ppm	Runoff and leaching from fertilizer use; sewage; erosion of natural deposits		
Nitrata - Nitrita (an Ni)	40	NA	NIA	Range	0.0	115	2.00	·		Runoff and leaching from fertilizer use;		
Nitrate + Nitrite (as N)	10	NA	NA	Average	NC	NC	NC	4	ppm	sewage; erosion of natural deposits		
D 11 1 (010 I)				Range		ND – 2.1						
Perchlorate (CIO4)	6	1	4	Average	ND	ND	ND	1.3	ppb	Industrial waste discharge		

PRIMARY STAN	NDAR	DS (Co	ontin	ued)						
Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water
VOLATILE ORGANIC CON	TAMINA	NTS								
Tetrachloroethylene (PCE)	5	0.06	0.5	Range Average	ND	ND	ND	ND – 0.60 0.05	ppb	Discharge from factories, dry cleaners, and auto shops
Toluene	150	150	0.5	Range Average	0.6	ND	ND	ND	ppb	Discharge from petroleum and chemical refineries
Trichloroethylene (TCE)	5	1.7	0.5	Range Average	ND	ND	ND	ND – 1.1 0.56	ppb	Discharge from metal degreasing sites and other factories
RADIOLOGICALS				Average	ND	ND	ND	0.50		
Gross Beta Particle Activity (h)	50	(0)	4	Range Average	ND	1.79	NR	NC	pCi/L	Decay of natural and man-made deposits
Combined Radium	5	(0)	NA	Range Average	ND	ND (2015)	0.148 (2016)	NC	pCi/L	Erosion of natural deposits
Radium 226	NA	0.05	1	Range Average	ND	ND (2015)	0.147 (2016)	NC	pCi/L	Erosion of natural deposits
Radium 228	NA	0.019	1	Range Average	ND	ND (2015)	0.001 (2016)	NC	pCi/L	Erosion of natural deposits
Strontium-90	8	0.35	2	Range Average	ND	0.13	NR	NC	pCi/L	Decay of natural and man-made deposits
Tritium	20,000	400	1,000	Range Average	ND	377	NR	NC	ppb	Decay of natural and man-made deposits
Uranium	20	0.43	1	Range Average	ND	ND (2018)	2.4 (2017)	2.3 – 3.2 2.8	pCi/L	Erosion of natural deposits
DISINFECTION BY-PRODU	JCTS, DI	SINFECT	ANT R	ESIDUAL	S, AND DISINFECTIO	N BY-PRODUCTS PI	RECURSORS			
Bromate (k)	10	0.1	1.0	Range Average	ND – 8.1 1.9	NA NA	NA	NC	ppm	Byproduct of drinking water disinfection
Total Trihalomethanes (TTHM) (k)	80	NA	1	Range Average	1.5	RWD Distribution System-V RWD Distribution System	Vide - 1.0 - 48.4	, NO	ppm	By-product of drinking water disinfection
Haloacetic Acids (HAA5) (k)	60	NA	1	Average Highest		RWD Distribution System-V RWD Distribution System	Vide - 1.1 - 15.2		ppm	By-product of drinking water disinfection
Total Chlorine Residual	[4]	[4]	NA	Range Average		RWD Distribution System-W RWD Distribution System	/ide - 2.12 - 2.63		ppm	Drinking water disinfectant added for treatment
Total Organic Carbon (TOC)	TT	NA	0.30	Range Average	1.7 – 2.6 2.4	1.07 – 1.16 1.12	ND	NC	ppm	Various natural and man-made sources; TOC as a medium for the formation of disinfection byproducts.
SECONDARY S	TAND	ARD:	S - A	J	TIC STANDAR					
				Range	ND – 110	ND – 100				
Aluminum (d)	200	600	50	Average	Highest RAA 122	ND	ND	ND	ppb	Erosion of natural deposits; residual from some surface water treatment processes
Chloride	500	NA	(2)	Range Average	46 – 55 50	74	6.8 – 9.8 8.3	20 – 24 22	ppm	Runoff / leaching from natural deposits; seawater influence
	100 THEE	Tirra-		Average	50		0.0		War and	

Action

3

	SECONDARY S	TAND	ARD:	S - A	ESTHE	TIC STANDA	RDS (Continued)			
	Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water
	Color	15	NA	(1)	Range Average	ND – 1 ND	1	ND	ND	Units	Naturally occurring organic materials
	Copper (d) (f)	1	0.3	0.05	7.110.1030	RW RWD D	/D Distribution System-Wide – Distribution System-Wide – 90 ibution System-Wide – Samp	- 35 Samples Collected Oth Percentile Level = 0	d 0.255	ppm	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
	Foaming Agents-MBAS	500	NA	(50)	Range Average	ND	0.11	ND	ND	ppb	Municipal and industrial waste discharges
ä	Iron	300	NA	100	Range		••••			ppb	Leaching from natural deposits: industrial wastes
	Odor Threshold (i)	3	NA	1	Average Range	243	ND	ND	ND	TON	Naturally occurring organic materials
经	· · · · · · · · · · · · · · · · · · ·			, ,,,	Average Range	1 435 – 503	1 300 – 440	1 380 – 410	1		, ,
	Specific Conductance	1,600	NA	NA	Average Range	469 65 – 81	370	395 25 – 31	490 40 – 47	μS/cm	Substances that form ions when in water; seawater influence
	Sulfate	500	NA	0.5	Average Range	73 224 – 289	32	28 210 – 230	44 290 – 300	ppm	Runoff / leaching from natural deposits; industrial wastes
	Total Dissolved Solids (TDS)	1,000	NA	(2)	Average	266	250	220	290 – 300 295	ppm	Runoff / leaching from natural deposits; seawater influence
#	OTHER PARAM	IETER	S								
	GENERAL MINERALS										
	Alkalinity	NA	NA	(1)	Range Average	67 – 70 68	60 – 77 68.5	150 – 160 155	170	ppm	Measure of water quality
To do	Bicarbonate (HCO3)	NA	NA	NA	Range Average	NC	NC	NC	210	mg/L	Naturally occurring from organic materials
	Calcium	NA	NA	(0.1)	Range Average	23 – 27 25	15 – 19 17	51 – 52 51.5	66 - 67 67	ppm	Measure of water quality
14	Magnesium	NA	NA	(0.01)	Range Average	11 – 12 12	11	1.5 – 8.6 8.05	12 – 13 12.5	ppm	Measure of water quality
V	Potassium	NA NA	NA	(0.2)	Range	2.2 – 2.7				ppm	Measure of water quality
	Sodium	NA	NA	(1)	Average Range	2.4 46 - 54	1.8	1.4 13 – 22	3.6 17 – 18	ppm	Measure of water quality
-					Average Range	50 101 – 116	49	17.5 160 – 170	17.5		
	Total Hardness (as CaCO3)	NA -	NA	(1)	Average Range	108 5.91 - 6.78	95	165 9.36 - 9.94	220	ppm	Measure of water quality
-	Total Hardness (Grains per Gallon)	NA	NA	NA	Average	6.32	5.56	9.65	12.87	gpg	Measure of water quality
	UNREGULATED CONTAMI	INANTS									
200	Boron	NL=1000	NA	100	Range Average	120	120 – 160 140	150	ND	ppb	Runoff / leaching from natural deposits; industrial wastes
-	Chlorate	NL=800	NA	20	Range Average	42	ND	NR	NC	ppb	By-product of drinking water chlorination; industrial processes
	Chromium VI	- NA	0.02	1	Range				2.6 – 2.8	ppb	Runoff/leaching from natural deposits; discharge from industrial waste factories
1			105400-10000		Average	ND	ND	ND	2.7		· · · ·

OTHER PARAMETERS (Continued)										
Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water
MISCELLANEOUS										
Calcium Carbonate Precipitation Potential (CCPP) (I)	NA	NA	NA	Range Average	1.1 – 7.3 2.6	NR	NR	NC	ppm	Elemental balance in water; affected by temperature, other factors
Corrosivity (Aggressiveness Index)(g)	NA	NA	NA	Range Average	12.1 – 12.2 12.1	11.46	NR	12.01 – 12.53 12.27	Al	Elemental balance in water; affected by temperature, other factors
Corrosivity (j) (as Saturation Index)	NA	NA	N/A	Range Average	0.34 - 0.38 0.36	-0.33	NR	0.15 - 0.68 0.62	SI	Elemental balance in water; affected by temperature, other factors
рН	NA	NA	N/A	Range Average	8.5	8.58	7.9 – 8.2 8.1	7.6 – 8.1 7.9	pH units	Measure of water quality

DEFINITION OF TERMS

Al	Aggressiveness Index	MRDL	Maximum Residual Disinfectant Level	ppq	parts per quadrillion or picograms per	
AL	Action Level	MRDLG	Maximum Residual Disinfectant Level Goal		liter (pg/L)	
Average	Average value of all samples collected	MWD	Metropolitan Water District of Southern	RAA	Running Annual Average	
CaCO3	Calcium Carbonate		California	Range	Lowest to highest sampling results	
CCPP	Calcium Carbonate Precipitation Potential	NA	Not Applicable	RL	Reporting Limit	
		NC	Not Collected	SI	Saturation Index (Langelier)	
CDWC	California Domestic Water Company	NR	Not Required	SWRCB	State Water Resources Control Board	
CFE	Combined Filter Effluent	ND	Not Detected at or above DLR or RL	TDS	Total Dissolved Solids	
CFU	Colony-Forming Units	NL	Notification Level to SWRCB	TON	Threshold Odor Number	
DLR	Detection Limits for Purposes of Reporting	NTU		TT		
HAA5	Sum of five haloacetic acids		Nephelometric Turbidity Units	11	Treatment Technique is a required process intended to reduce the level	
НРС	Heterotrophic Plate Count	pCi/L	picoCuries per Liter		of a contaminate in drinking water	
LRAA	Locational Running Annual Average	PHG	Public Health Goal	TTHM	Total Trihalomethanes	
MCL	Maximum Contaminant Level	ppb	parts per billion or micrograms per liter (µg/L)	TVMWD	Three Valleys Municipal Water District	
MCLG	Maximum Contaminant Level Goal	ppm	parts per million or milligrams per liter			
MFL	Million Fibers per Liter		(mg/L)			

GLOSSARY

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standard (PDWS): MCLs, MRDLs and treatment techniques (TTs) for contaminants that affect health, along with their monitoring and reporting requirements.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Running Annual Average (RAA): Highest RAA is the highest of all Running Annual Averages calculated as an average of all within a 12-month period.

Locational Running Annual Average (LRAA): Highest LRAA is the highest of all Locational Running Annual Averages calculated as an average of all samples collected within a 12 month period.

- (a) Metropolitan and Three Valleys MWD monitor turbidity at the CFE locations using continuous and grab samples. Turbidity, a measure of cloudiness of the water, is an indicator of treatment performance. Turbidity was in compliance with the TT primary drinking water standard and the secondary drinking water standard of less than 5 NTU.
- (b) Results are based on Rowland Water District's distribution system's highest monthly percent positives. 954 samples were analyzed in 2019. The highest monthly percentage was 0%. Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform positive.
- (c) The MCL for E. coli is based on routine and repeat samples that are total coliform-positive, and either is E. coli-positive or the system fails to take repeat samples following an E. coli-positive routine sample, or the system fails to analyze a total coliform-positive repeat sample for E. coli. The MCL was not violated.
- (d) Aluminum and Copper have both primary and secondary standards.
- (e) All distribution system samples had detectable total chlorine residuals, so no HPC was required. Metropolitan and Three Valleys MWD monitors HPCs to ensure treatment process efficacy.
- (f) Lead and Copper samples are required to be collected once every three years during the months of June - September. Sample results are from 2018.

- (g) Al ≥ 12.0 = Non-aggressive water; Al 10.0-11.9 = Moderately aggressive water; Al ≤ 10.0 = Highly aggressive water. Reference: ANSI/ AWWA Standard C400-93 (R98)
- (h) Gross beta particle activity MCL is 4 millirem/ year annual dose equivalent to the total body or any internal organ. 50 pCi/L is used as a screening level.
- ii) Compliance with odor threshold secondary MCL is based on RAA. Treatment plants begin quarterly monitoring if annual monitoring results are above 3.
- (j) SI measures the tendency for a water to precipitate or dissolve calcium carbonate (a natural mineral in water). Water with SI <-2.0 is highly corrosive and would be corrosive to almost all materials found in a typical water system. SI between -2.0 to 0 indicates a balanced water and SI >0.5 is scale forming.
- (k) RWD was in compliance with all provisions of the Stage 2 Disinfectants and Disinfection By-Products Rule (D/DBPR). Compliance was based on the highest Locational Running Annual Average (LRAA) of all data collected at distribution system-wide monitoring locations.
- (I) Positive CCPP = non corrosive; tendency to precipitate and/or deposit scales on pipe. Negative CCPP = corrosive; tendency to dissolve calcium carbonate. Reference: Standard Methods (SM 2330)

Rowland Water District

3021 Fullerton Road Rowland Heights, CA 91748 (562) 697-1726

OFFICE HOURS:

Monday - Thursday 8 a.m. to 5:30 p.m.

Friday 8 a.m. to 4:30 p.m. Closed on alternating Fridays

AFTER HOURS

Emergency Service: (562) 697-1726

Bound by our core values – Accountability, Communication and Teamwork – we are committed to providing the highest level of service to our customers

Board of Directors

Robert W. Lewis - Division IV President

Teresa P. Rios - Division I Vice President Anthony J. Lima - Division II

Director

John E. Bellah - Division III

Director

Szu Pei Lu-Yang - Division V

Director

Tom Coleman General Manager

For questions or more information about this report, please contact Roy Frausto, Engineering

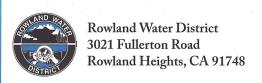
& Compliance Manager at (562) 697-1726, or

visit us online at www.RowlandWater.com

www.RowlandWater.com

To reduce costs to ratepayers and allow for convenient online viewing, Rowland Water District's Annual Consumer Confidence Report will be available a https://www.rowlandwaterquality.org starting July 1, 2020. If you have any further questions or would like a printed copy, please call (562) 697-1726 or stop by the district office.

Para reducir costos a los contribuyentes y proveer la manera más conveniente vía internet, El Informe Confidencial del Consumidor Anual de Rowland Water Distric estará disponible en https://www.rowlandwaterquality.org a partir del 1 de julio, 202 Si usted tiene alguna pregunta o desea una copia impresa, por favor llame al (562) 697-1726 o pase por la oficina de distrito.


为了降低成本 节省开支和更加方便用户,从 2020 年 7月 1 日起 Rowland Water District's 的年度消费者信心报告将在https://www.rowlandwaterquality.org 上可以浏览, 如果您有任何疑问或 想得到报告的印刷本,请致电

지불자들의 비용을 줄이고 온라인상으로보는것을편리하게하기위해 Rowland Water 지구 소비자 연례 신뢰조사를 2020년 7월 1일부터 https://www.rowlandwaterquality.org 에 서 찾으실 수 있습니다. 문의사항이 있거나 문서 사본을 원하실 경우 (562) 697-1726 으로 전화 통화 혹은 행정지구 사무실에 방문하여 주십시오.

Nhằm giảm bớt chi phí cho người nộp thuế và để thuận tiện cho việc tra cứu trực tuyến, Báo Cáo Niếm Tin Của Người Tiêu Dùng Hàng Năm của Quận Rowland Water được đẳng tải tại https://www.rowlandwaterquality.org bắt đầu từ ngày 01 tháng Bảy, 2020. Nếu quý vị có bất kỳ câu hỏi nào hoặc muốn có một bản in, xin vui lòng gọi số (562) 697-1726 hoặc đến trực tiếp văn phòng của quận.

Upang mabawasan ang mga gastos ng mga nagbabayad ng rate at hayaang madaling makita online, ang Taunang Ulat sa Kumpiyansa ng Mamimili (Annual Consumer Confidence Report) ng Rowland Water District ay makikita sa https://www.rowlandwaterquality.org simula sa July 1, 2020. Kung mayroon ka pang mga tanong o nais mo ng naka-print na kopya, mangyaring tumawag sa (562) 697-1726 o pumunta sa opisina ng distrito

為了降低成本節省開支和更加方便用戶,從 2020 年 7 月 1 日起 Rowland Water District's 的年度消費者信心報告將在 https://www.rowlandwaterquality.org 上可以瀏覽,如果您有任何疑問或 想得到報告的印刷本,請致電 (562) 697-1726 或親自來 District 辦公室來取

PRSRT FIRST CLASS U.S. Postage Paid City of Industry, CA Permit No. 5030