

Drinking Water Quality Report

2020

ladwp.com/waterqualityreport

TABLE OF CONTENTS

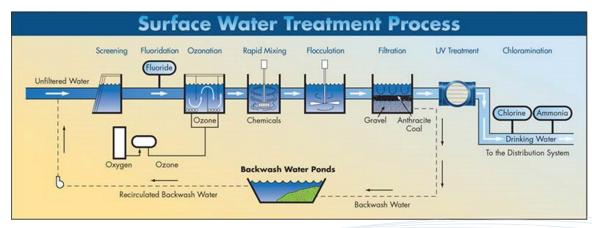
A message from the Director of Water Quality	3
A message from the Senior Assistant General Manager, Water System	4
L.A. Water Sources in 2020	5
Drinking Water and Your Health	6
Customer Service During Pandemic	7
Regulatory Compliance	8
Water Quality Service Areas in Los Angeles	11
Monitoring Results Tables	12
How to Read the 2020 Tables	13
General Information	19
Message for Non-English Speaking Customers	20

SAFEGUARDING L.A.'S DRINKING WATER

A Message from Razmik Manoukian

Director of Water Quality

It's been a tough year with many adjustments for all of Los Angeles, but one thing we didn't have to worry about was the safety of our drinking water supply. Throughout 2020, LADWP maintained the highest water quality standards by adhering to all treatment, monitoring and safety protocols.


The City of Los Angeles water supply is approximately 89 percent surface water, 9 percent groundwater, and 2 percent recycled water. The surface water is purified using a multibarrier approach as depicted in the treatment process figure below. The water is purified by screening, ozonation, filtration, ultra-violet disinfection, chlorination, and ammoniation. LADWP also disinfects extracted groundwater with chlorine to safeguard against microorganisms. Every step of the treatment process achieves a certain level of microorganism and contaminant removal. When it comes to viruses, including COVID-19, the most effective treatment process is chlorination. A very small amount of chlorine is highly effective in killing viruses. This is important because chlorine protects the water supply as it travels through the distribution system to your tap.

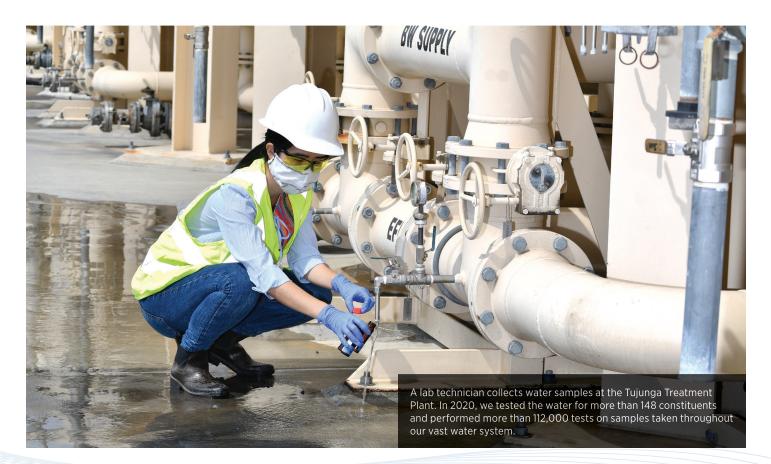
The use of water chlorination to disinfect public water supplies began in the early 1900s. Its use has had a major impact on the incidence of waterborne disease such as cholera, typhoid fever and dysentery in the U.S. and worldwide. Chlorination of drinking water has been credited for increasing life expectancy in developed countries during the twentieth century. It continues to be a primary method for disinfecting water today and an effective treatment step in stopping the COVID-19 virus. LADWP uses chlorination and other state-of-art water treatment methods because we are committed to the safety and quality of your drinking water.

The U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board, Division of Drinking Water (SWRCB-DDW) require that all water agencies produce an annual report informing customers about the quality of their drinking water. To ensure compliance with these drinking water standards, LADWP employees actively safeguard our water. Every day, we effectively manage state-of-the-art water treatment facilities and diligently test the water to make certain the highest quality water is delivered to you. Over 37,000 samples are tested for hundreds of constituents throughout the distribution system annually.

As you read through this report, you will find references to tables that depict the actual levels of specific substances or "constituents" we have found in the city's water supply. Looking at the tables, I am proud to state that all regulated constituents detected were at very low levels. In fact, LADWP water quality performance was at least 50 percent better than safety levels set by the US EPA and SWRCB-DDW. Out of the 104 constituents we are required to monitor, none were found at levels considered unsafe by health agencies and only 32 were detected at very low levels as listed in Tables I and II.

We are proud to serve safe, refreshing, high quality drinking water to all our customers across the city—at home, work, and neighborhood parks. At LADWP, we are committed to customer service. If you have any questions or concerns about your water quality or need advice on how to improve water quality at your home or workplace, please do not hesitate to call our Water Quality Hotline at (213) 367-3182.

LOS ANGELES IS WATER STRONG


A Message from Richard Harasick

LADWP Senior Assistant General Manager, Water System

LADWP remains water strong despite all the challenges of 2020. Through the dedication and commitment of our essential workforce we continue to serve you safe, high quality drinking water. Our skilled personnel ensure water treatment facilities are maintained and water quality is monitored, sampled, and tested regularly. All water served to you and your family is treated and tested rigorously to meet state and federal standards. As your local utility, LADWP never stopped providing essential services during the pandemic, amidst the wildfires, and through periods of civil unrest.


Our workforce remains strong because we are taking stringent precautions to stay healthy on the job. We take our responsibility to safeguard the city's water supply seriously, especially during the COVID-19 pandemic. Due to our investments in infrastructure, we continue to make our water system resilient and responsive to your needs and the community we serve. We continue to upgrade and fortify our distribution system through multiple improvement projects. These include strategic pipe replacement, earthquake resilient pipe installation, and ongoing maintenance of tanks and reservoirs. Also, investments in a diverse water supply portfolio of stormwater capture, water conservation, and water recycling further help us to prepare for dry periods and make us less dependent on purchased imported water supplies. Strong water infrastructure allows us to serve safe, high quality water and secure a sustainable water future.

We have every confidence in the quality, reliability, and safety of the water being delivered to your tap. We work in partnership with our regulators to maintain the water system to the highest standards, and we keep a watchful eye on any emerging contaminants. While we continue to navigate these difficult times together, we're working diligently to provide you with the essential services you need. Together, Los Angeles is Water Strong.

L.A.'S WATER SOURCES IN 2020

Los Angeles receives water from several sources. In 2020, the Los Angeles Aqueduct (LAA) supplied 40 percent of the water that was treated at the Los Angeles Aqueduct Filtration Plant. Purchased imported water from the Metropolitan Water District of Southern California (MWD) amounted to 49 percent. The remaining water supply was sourced from local groundwater at 9 percent and recycled water at 2 percent.

Drinking Water and Your Health

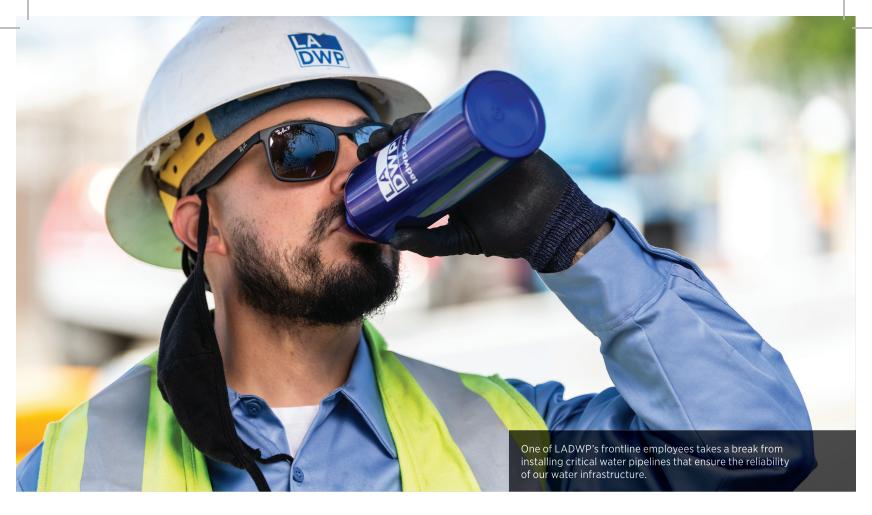
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material. It can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA Safe Drinking Water Hotline: (800) 426-4791.

Health Advisory for People with Weakened Immune Systems

Although LADWP treats its water to meet drinking water standards, some people may be more vulnerable to constituents in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These individuals should seek advice about drinking water from their health care providers. U.S. EPA Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline: (800) 426-4791.

Contaminants That May Be Present


Water agencies are required to use the following language to discuss the source of contaminants that may reasonably be expected to be found in drinking water, including tap and bottled water.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants that can be naturallyoccurring or be the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems.

The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

LADWP STAYS FOCUSED ON CUSTOMER SERVICE DURING THE PANDEMIC

LADWP continues to serve safe, high quality water despite the COVID-19 pandemic. The city's drinking water undergoes a multi-step treatment process that is closely monitored throughout the distribution system. This critical work is carried out by our frontline workers — engineers, microbiologists, chemists, sample collectors, and laboratory technicians as well as our everyday water utility workers installing and maintaining the vital water pipe distribution system. LADWP has remained water strong throughout these challenging times. With our capable and dedicated team behind every refreshing glass of tap water, we want to remind you that purchasing expensive single-use plastic water bottles is not necessary.

It is important that our customers feel confidence in the safety of the water we serve. LADWP offers free water quality testing at your residence or place of business. Upon request, one of our experts will collect a water sample and submit it for testing at our state-of-the-art water quality laboratory. A customized report will be provided to you. This report describes your water quality and identifies potential plumbing system issues, if any, at your property.

The inspectors help our customers understand the data provided in the report and identify low- and no-cost

solutions to everyday water-related inquiries. This is a job that we take very seriously. In fact, we've completed over 97 percent of customer-initiated inspection requests by the end of the next business day.

Like many organizations this past year, we needed time to rethink and adjust our services to comply with socialdistancing guidelines. These adjustments helped ensure the safety of customers, employees, and the general public. Where possible, we addressed many customer concerns over the phone and provided recommendations to improve their water quality. Additionally, we provided online resources such as a FAQ page and step-by-step instructions for common customer concerns. Following public health guidelines for COVID safety and prevention, we made some modifications to our processes and were able to conduct some in-person services in a responsible, safe, and customer focused manner.

LADWP remains committed to assisting our customers and we appreciate the opportunity to serve you. If you have any water quality concerns, please contact us at (213) 367-3182 or by email at waterquality@ladwp.com.

REGULATORY COMPLIANCE HOW DID WE MEASURE UP?

LADWP works around the clock to ensure that the drinking water we deliver to our customers is of the highest quality and meets all safety requirements. Highly trained, certified treatment operators monitor our water treatment operations continuously, thereby helping meet federal and state standards for drinking water. In 2020, we tested for more than 148 constituents in the water and performed more than 112,000 tests on samples taken throughout our water system. LADWP received no violations and met all primary drinking water standards in 2020.

PFAS and Drinking Water in California

Poly- and Perfluoroalkyl Substances (PFAS) are a group of synthetic (man-made) chemicals which include Perfluorooctanoic acid (PFOA) and Perfluorooctanoic sulfonic acid (PFOS). They have been used for decades in manufacturing; they are suspected carcinogens and don't breakdown. Most U.S. manufacturers voluntarily phased out production of PFOS between 2000 and 2002, and PFOA in 2006. Studies indicate potential health consequences from exposure to significant levels of PFAS. Health effects may include high cholesterol, liver and thyroid cancer risks, immunotoxicity, pregnancy-induced hypertension, low birth weights, and decreased fertility. More information is available on US EPA's webpage https://www.epa.gov/ground-water-and-drinkingwater/drinking-water-health-advisories-pfoa-and-pfos.

During the course of 2020, some states agencies released new PFAS requirements that included monitoring, compliance determination and reporting. A growing number of state agencies are actively sampling for PFAS to determine their occurrence, levels and potential environmental pathways. The State Board has been actively investigating and sampling for PFAS since 2019. Updated drinking water response levels were released for PFOA (10 parts per trillion) and PFOS (40 parts per trillion).

At the federal level, the U.S. EPA is yet to release its final determination if PFAS will become regulated. However, at the state level, the State Board has requested that the California

Office of Environmental Health Hazard Assessment begin the process to develop public health goals for PFOA and PFOS. The next step will be establishing regulatory standards, and maximum contaminant levels in drinking water.

LADWP began testing for PFAS in fiscal year 2013-14 and has continued to monitor its local groundwater sources for both PFOA and PFOS. Although PFAS were detected in a few samples from individual wells, no single well represents water provided to our customers. Water from individual wells is blended with water from other wells, and is further diluted by blending with much larger volumes of surface water before entering the distribution system. LADWP has not found PFAS contamination in its water distribution system. Customers can be confident that LADWP is providing high quality drinking water.

If you have questions, please contact our Water Quality Hotline at (213) 367-3182 or email us at waterquality@ladwp.com.

Compliance with Lead and Copper Rule (LCR)

LADWP has a long and successful history of controlling corrosion and minimizing lead exposure to customers. Between 1978 and 2006, LADWP cleaned and cement-lined approximately 2,600 miles of unlined iron pipes 4 inches in diameter and greater. Since 1994, we have been replacing our utility portion of galvanized iron service lines. The number of galvanized service lines in our inventory decreased from approximately 45,000 in 1994 to about 16,900 in 2020. LADWP initiated another program in 1998 to replace low-lead (8 percent lead) water meters with leadfree (0.25 percent lead) water meters. There are currently over 700,000 active water meters in LADWP's water distribution system, and approximately 31,500 meters are being replaced annually. Approximately 514,300 (71 percent) water meters have been replaced. In another proactive effort, our staff had located and removed approximately 12,000 known lead goosenecks from its water distribution system by the year 2005. In 2018, we completed an inventory of its remaining unknown utilityowned services lines-none consisted of lead material.

LADWP conducted LCR residential sampling in 2020. During the sampling program, 100 first draw samples were obtained from customers' homes and analyzed at LADWP's water quality laboratory. The results showed a 90th percentile of 5.0 parts per billion (ppb) for lead and 394 ppb for copper. Both values were well below the respective Action Levels of 15 ppb for lead and 1300 ppb for copper.

LCR Program Requirements

The LCR sampling program focuses on single family residences which were built within 1982 to 1987 that have copper pipes plumbed with lead solder. Customers with qualifying homes that participate in the sampling program will get their tap water tested for lead and copper at no cost. If your home qualifies, you can participate in LADWP's next round of LCR sampling between June and September. Contact the Water Quality Hotline at (213) 367-3182 or by email at waterquality@ladwp.com.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is also available from the Safe Drinking Water Hotline: (800) 426-4791, or at www.epa.gov/lead

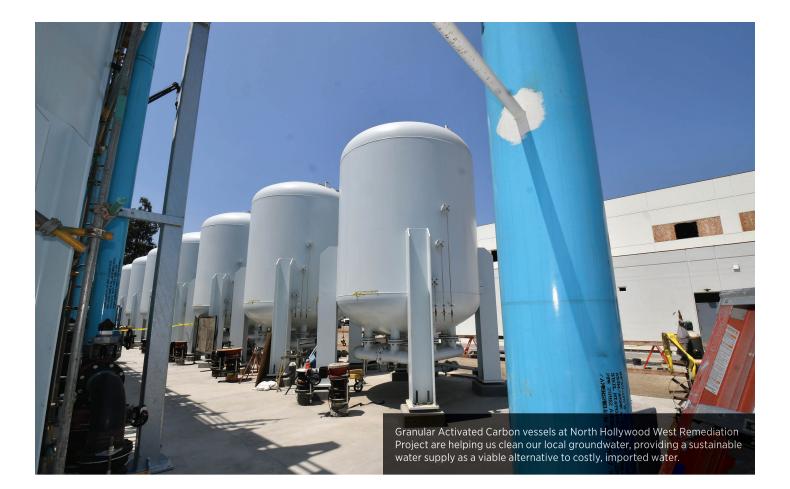
Assessment Programs for Surface and Groundwater Resources

Source water assessment updates are required by the SWRCB-DDW and must be included in the annual drinking water quality report. LADWP completed an initial source water assessment in 2002 and is required to provide an updated assessment every five years through a watershed sanitary survey. Watershed sanitary surveys examine possible contamination to sources of drinking water and recommend actions to better protect these water sources.

Below is an update of LADWP's source water assessment.

Surface Supply:

In 2020, LADWP completed an assessment of the Owens Valley and Mono Basin watersheds that supply the Los Angeles Aqueduct. These sources are most vulnerable to geothermal activities that release naturally occurring arsenic into creeks which feed the Owens River. Assessments were also completed for the Lower Stone Canyon Reservoir Watershed in 2019 and Encino Reservoir Watershed in 2020. Activities that impact water quality in these watersheds are livestock grazing, wildlife, and unauthorized public use of storage reservoirs. The impact to water quality from these activities is deemed to be minimal.


LADWP regularly monitors for cryptosporidium and giardia. Results indicate that their presence is infrequent and remain at very low levels in these watersheds.

Groundwater Supply:

Assessment of groundwater sources in the San Fernando Basin was updated in 2018. Assessment of groundwater sources in the Central and Sylmar Basins was completed in February 2019. Located in highly urbanized areas, the wells within these aquifers are most vulnerable to the following activities: dry cleaning, manufacturing, metal finishing, septic systems, chemical processing, and storage of fertilizer, pesticides, and chemicals. These local water supplies are treated and blended with water from other sources to ensure compliance with drinking water standards.

Purchased Imported Supplies from MWD:

The most recent surveys for MWD's source waters are the

Colorado River Watershed Sanitary Survey – 2020 Update, and the State Water Project Watershed Sanitary Survey – 2016 Update. Each source water used by MWD — the Colorado River and State Water Project — has different water quality challenges. Both are exposed to stormwater runoff, recreational activities, wastewater discharges, wildlife, fires and other watershed-related factors that could affect water quality. Treatment to remove specific contaminants can be more expensive than measures to protect water at the source. This is why MWD and other water agencies invest resources to support improved watershed protection programs.

Three of the five MWD treatment plants -- F.E. Weymouth, Robert B. Diemer, and Joseph Jensen -- supply water to the Los Angeles area. MWD tests its water for nearly 400 constituents and performs about 250,000 water quality tests per year on samples gathered from its vast distribution system. Analysis of these samples is undertaken at MWD's water quality laboratory. Results from MWD are provided to LADWP and are included in the report on Tables I, II and III.

Safeguarding our Surface Water

Administered by the SWRCB-DDW, the Surface Water Treatment Rule (SWTR) is a set of drinking water regulations that establish specific treatment requirements for surface water to reduce the risk of waterborne diseases. The last update to the SWTR is the Long Term 2 Enhanced Surface Water Treatment Rule (LT2) which was put into effect in 2006. This rule protects treated water reservoirs from microbiological contamination by requiring one of three actions: 1) covering, 2) removing from service, or 3) providing additional treatment. LT2 applied to the six remaining uncovered reservoirs at the time: Los Angeles, Upper Stone Canyon, Santa Ynez, Ivanhoe, Silver Lake, and Elysian.

In March 2009, a compliance agreement for LT2 was executed between LADWP and SWRCB-DDW. The Los Angeles Reservoir is the only remaining reservoir awaiting completion of additional treatment.

Los Angeles Reservoir will remain in compliance with the LT2 through a combination of shade balls and construction of a new ultraviolet (UV) treatment plant. The "shading" of the reservoir was completed in 2015 with nearly 96 million shade balls deployed. The new UV treatment facility will disinfect water leaving the Los Angeles Reservoir to satisfy the LT2 water quality regulation. Construction began in June 2017 and will be completed July 2021.

Visit www.ladwp.com/waterquality to learn more about water quality projects and issues. For more information on the latest watershed sanitary surveys contact (213) 367-3182.

WATER QUALITY SERVICE AREAS IN LOS ANGELES

San Fernando Valley Communities

Sources: Los Angeles Aqueduct, local groundwater, and MWD State Water Project

- ,		
Arleta	Northridge	Sylmar
Canoga Park	Olive View	Tarzana
Chatsworth	Pacoima	Toluca Lake
Encino	Panorama City	Tujunga
Granada Hills	Porter Ranch	Valley Village
Hollywood Hills	Reseda	Van Nuys
Lake View Terrace	Sherman Oaks	Warner Center
Mission Hills	Studio City	West Hills
North Hills	Sun Valley	Winnetka
North Hollywood	Sunland	Woodland Hills

Western Los Angeles Communities

Sources: Los Angeles Aqueduct and MWD State Water Project

Bel Air Estates	Culver City [*]	Sawtelle
Beverly Glen	Mar Vista	Venice
Brentwood	Pacific Palisades	West Los Angeles
Castellamare	Palisades Highlands	Westchester
Century City	Palms	Westwood
Cheviot Hills	Playa del Rey	

Eastern Los Angeles Communities

Sources: MWD State Water Project and Colorado River Aqueduct

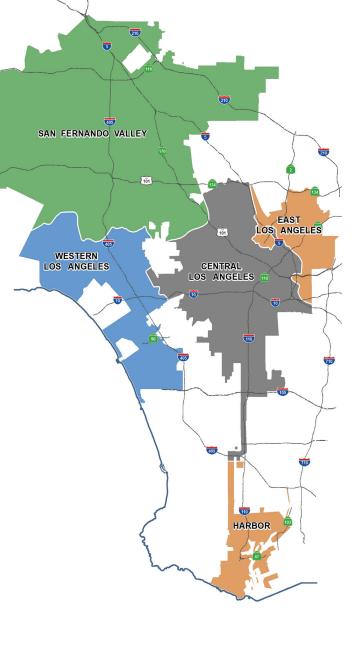
Echo Park	Lincoln Heights
El Sereno	Montecito Heights
Glassell Park	Monterey Hills
Highland Park	Mt. Washington
	El Sereno Glassell Park

Central Los Angeles Communities

Sources: Los Angeles Aqueduct, MWD State Water Project, and local groundwater

Baldwin Hills	Hyde Park	Park La Brea
Chinatown	Koreatown	Rancho Park
Country Club Park	L.A. City Strip*	Silverlake
Crenshaw	Little Tokyo	Watts
Griffith Park	Los Feliz	West Hollywood*
Hancock Park	Mid City	Westlake
Hollywood	Mt. Olympus	

Harbor Communities


Sources: MWD State Water Project and Colorado River Aqueduct

East San Pedro (Terminal Island)	L.A. City Strip [*]
Harbor City	San Pedro
Harbor Gateway [*]	Wilmington

*Sources of drinking water may fluctuate in these communities depending on operational needs and source water availability.

2020 Drinking Water Quality Report | 11

101

DRINKING WATER QUALITY MONITORING RESULTS

Tables I, II and III list the results of water tests performed by the LADWP and MWD from January to December 2020. LADWP tests for over 148 substances. These tables include only substances with values that are detected. No substance was detected above the maximum contaminant level.

Terms used in Tables:

Compliance: A drinking water standard based on the health risk (primary standards) and aesthetic (secondary standards) exposure of a contaminant to consumers. For example, bacteria and nitrate have strict limits that must be met at all times due to the acute effects they can cause. Other standards, like small amounts of disinfection by-products and man-made chemicals, have standards that are based on a lifetime of exposure because the risk to consumers is very low. Compliance with most standards is based on an average of samples collected within a year. This allows for some fluctuation above and below the numerical standard, while still protecting public health.

Detection Level for Reporting (DLR):

A detected contaminant at or above its detection level for reporting purposes. DLRs are set by the SWRCB-DDW. Data reported in Tables I through III reflect DLRs.

Federal Minimum Reporting Level (MRL): Minimum concentration of a contaminant which can be detected in drinking water using analytical methods established by the U.S. EPA. Data reported in Table IV reflect MRLs.

Maximum Contaminant Level (MCL): Highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): Level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA.

Maximum Residual Disinfectant Level (MRDL): Highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG):

Level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the beneficial use of disinfectants to control microbial contaminants. MRDLGs are set by U.S. EPA.

Notification Level (NL): Health-based advisory level established by SWRCB-DDW for chemicals in drinking water that lack MCLs.

Primary Drinking Water Standard (PDWS): MCLs, MRDLs and treatment techniques (TTs) for contaminants that affect health, along with their monitoring and reporting requirements.

Public Health Goal (PHG): Level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Regulatory Action Level (AL): Concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Secondary Maximum Contaminant Level (SMCL): Highest level a constituent allowed in drinking water that may affect the taste, odor or appearance. SMCLs are set by the U.S. EPA.

Treatment Technique (TT): Required process intended to reduce the level of a contaminant in drinking water. For example, the filtration process is a treatment technique used to reduce turbidity (cloudiness in water) and microbial contaminants from surface water. High turbidities may be indicative of poor or inadequate filtration.

HOW TO READ THE TABLES

The substances found in the water served in your area are listed as follows:

- For San Fernando Valley Area water test results are under the Los Angeles Aqueduct Filtration Plant (LAAFP), the Northern Combined Wells (NCW), and the Metropolitan Water District (MWD) Jensen Plant columns.
- For Central Los Angeles Area water test results are under the LAAFP and the Southern Combined Wells (SCW) columns.
- For Western Los Angeles Area water test results are under the LAAFP columns.
- For Harbor/Eastern Los Angeles Area water test results are under MWD Weymouth, Diemer, and Jensen Plants columns.

Some substances are reported on a citywide basis as required by SWRCB-DDW.

Abbreviations and Footnotes

ACU = apparent color unit

- **CFU/mL** = colony-forming unit per milliliter
- < = less than the detection limit for reporting purposes</p>
- µg/L = micrograms per liter (equivalent to ppb)
- **µS/cm** = microsiemens per centimeter
- **mg/L** = milligrams per liter (equivalent to ppm)
- **NTU** = nephelometric turbidity units
- **NA** = not applicable
- NR = not reported
- NT = not tested
- NUM/100 mL = number per 100 milliliter
- % = percentage
- pCi/L = picocuries per liter
- TON = threshold odor number

TABLE I

Calendar Year 2020 Water Quality Monitoring Results

Health-based Primary Drinking Water Standards (MCLs) Substances Detected in Treated Water

Substances	Major Sources in Drinking Water	Units	Meets Primary Standard (YES /	State Primary Standard	State PHG	Aque	ngeles educt n Plant"	"Nor Combine	thern ed Wells"		ithern ed Wells"	"M' Weymou	WD ith Plant"	"M' Dieme	WD r Plant"		WD n Plant"
			NO)	MCL		Average	Range	Average	Range	Average	Range	Average	Range	Average	Range	Average	Range
Aluminum	Erosion of natural deposits; residue from surface water treatment processes	µg/L	YES	1000	600	<50	<50	<50	<50	<50	<50 - 91	149 (a)	80 - 210	137 (a)	<50 - 260	116 (a)	<50 - 220
Arsenic	Erosion of natural deposits	µg/L	YES	10	0.004	<2 (a)	<2 - 3.2	<2	<2 - 2.5	<2	<2 - 2.5	<2	<2	<2	<2	<2	<2
Barium	Erosion of natural deposits	µg/L	YES	1000	2000	<100	<100	<100	<100	<100	<100 - 120	105	105	107	107	<100	<100
Bromate (b)	By-product of ozone disinfection; formed under sunlight for chlorinated water	µg/L	YES	10	0.1	<1 (a)	<1 - 1.3	<1	<1 - 3.0	0.5	<1 - 1.1	2.0 (a)	<1 - 4.2	1.9 (a)	<1 - 1.3	4.4 (a)	1.4 - 6.0
Fluoride	Erosion of natural deposits; water additive that promotes good dental health	mg/L	YES	2	1	0.7	0.7 - 0.8	0.7	0.6 - 0.7	0.7	0.4 - 0.8	0.7	0.6 - 0.8	0.7	0.5 - 0.9	0.7	0.4 - 0.8
Gross Beta Particle Activity (c)	Naturally present in the environment	pCi/L	YES	50	0	4	4 - 5	4	<4 - 4	5	<4 - 7	4	<3 - 6	<3	<3 - 7	<3	<3
Heterotrophic Plate Count Bacteria	Naturally present in the environment	CFU/ mL	YES	TT	none	<1	<1	<1	<1	<1	<1 - 2	<1	<1 - 1	<1	<1 - 1	<1	<1 - 3
Nickel	Runoff and leaching from natural deposits; discharge from metal factories	µg/L	YES	100	12	<1	<1 - 1	<1	<1	1	<1 - 1	<1	<1	<1	<1	<1	<1
Nitrate (as N)	Erosion of natural deposits; runoff and leaching from fertilizer use	mg/L	YES	10	10	<0.4	<0.4	0.7	0.6 - 1.8	0.7	0.6 - 2.9	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Nitrate + Nitrite (as N)	Erosion of natural deposits; runoff and leaching from fertilizer use	mg/L	YES	10	10	<0.4	<0.4	0.7	0.6 - 1.8	0.7	0.6 - 2.9	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Total Organic Carbon (TOC)	Erosion of natural deposits	mg/L	YES	TT	none	1.6	1.5 - 1.7	1.3	1.1 - 1.6	1.3	0.3 - 2.2	2.4	2.1 - 2.6	2.4	2.2 - 2.7	2.2	1.8 - 2.3
Total Zylenes	Discharge from petroleum and chemical refineries; fuel solvent	µg/L	YES	1750	1800	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 - 0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene (TCE)	Discharge from metal degreasing sites and other factories	µg/L	YES	5	1.7	<0.5	<0.5	<0.5	<0.5 - 1.2	<0.5	<0.5 - 1.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Turbidity (c)	Soil runoff	NTU %	YES	TT = 1 TT = 95% of samples ≤0.3 NTU	none	0.108	NA	NA	NA	NA	NA	.04 100	NA	0.04	NA	0.04	NA
Uranium (d)	Erosion of natural deposits	pCi/L	YES	20	0.43	2.9	2.5 - 3.6	2.7	2.1 - 3.5	2.7	2.1 - 6.2	2	1 - 3	2	1 - 3	<1	<1 - 3

(a) Values reflect Highest Running Annual Average (HRAA). HRAA is the highest of all Running Annual Averages (RAAs) in the reported calendar year. RAA is a calculated average of all samples collected within the previous 12-month period, which may include test data from the previous calendar year. HRAA may be higher than the range, which is based on the test data in the reported calendar year. (c) Turbidity is a measure of the cloudiness of water and is a good indicator of water quality and filtration performance. High turbidity can hinder the effectiveness of disinfectants. The Primary Drinking Water Standard for turbidity (included in this table) at water filtration plants is less than or equal to 0.3 NTU in at least 95 percent of the measurements taken in any month and shall not exceed 1.0 NTU at any time. The reporting requirement for treatment plant turbidity is to report the highest single measurement in the calendar year as well as the lowest monthly percentage of measurements that are less than or equal to 0.3 NTU.

(b) Bromate is formed in water treated with ozone in the presence of bromide. Bromate has also been found in water treated with chlorine in some uncovered reservoirs in LADWP that have elevated bromide levels and are exposed to sunlight. MWD tests for bromate at its Diemer and Jensen Filtration Plants, which use ozone. Weymouth Plant has tested for bromate for less than 12-month period and so RAA is not calculated. All LADWP distribution reservoirs are now shielded with flexible covers or shade balls to minimize bromate formation.

(d) Radiological monitoring is performed in cycles of various frequencies in LADWP for treated sources water and at the blend points. Monitoring for Gross Alpha Particle Activity is performed in six year cycle and was conducted in 2016. Monitoring of Combined Radium-226 and Radium-228 is performed in three year cycle and was conducted in 2019. Monitoring of Gross Beta Particle Activity, Strontium-90, Tritium and Uranium is performed annually. MWD conducted all radiological monitoring in 2020.

TABLE I (CONT'D)

Calendar Year 2020 Water Quality Monitoring Results

Health-based Primary Drinking Water Standards (MCLs) Substances Detected in Treated Water and Reported on Citywide Basis

Substances	Major Sources in Drinking Water	Units	Meets Primary Standard (YES/NO)	State Primary Standard MCL or (MRDL)	State PHG / (MRDLG)	Average	Range
Bromate (uncovered reservoirs)	Byproduct of ozone disinfection; formed under sunlight for chlorinated water	µg/L	YES	10	0.1	HRAA = <1 (a)	Range = <1
Chlorine Residual, Total	Drinking water disinfectant added for treatment	mg/L	YES	(4)	(4)	HRAA = 1.9 (a)	Range = 1.8 – 2.0
Copper (at-the-tap) Action LeveL = 1300 (e)	Internal corrosion of household water plumbing systems	µg/L	YES	TT	300	90th Percentile value = 394	"Number of samples exceeding AL = 0 out of 100"
Fluoride	Erosion of natural deposits; water additive that promotes good dental health	mg/L	YES	2	1	Average = 0.7	Range = 0.7 - 0.9
Haloacetic Acids (Five) (HAA5)	Byproduct of drinking water disinfection	µg/L	YES	60	none	HLRAA = 11 (f)	Range = 3 – 12
Lead (at-the-tap) Action Level = 15 (e)	Internal corrosion of household water plumbing systems	µg/L	YES	TT	0.2	90th Percentile value = 5.0	"Number of samples exceeding AL = 1 out of 100"
Total Coliform Bacteria	Naturally present in the environment	% Positives	YES	≤5% of monthly samples are coliform positive	0	Highest monthly % positive samples = 0.7%	Range = % positive samples 0% – 0.7%
Total Trihalomethanes (TTHM)	Byproduct of drinking water disinfection	µg/L	YES	80	none	HLRAA = 27 (f)	Range = 7 - 29

(a) Values reflect Highest Running Annual Average (HRAA). HRAA is the highest of all Running Annual Averages (RAAs) in the reported calendar year. RAA is a calculated average of all samples collected within the previous 12-month period, which may include test data from the previous calendar year. HRAA may be higher than the range, which is based on the test data in the reported calendar year.

(e) At-the-tap monitoring of lead and copper is conducted as required by the federal Lead and Copper Rule. A system is out of compliance if the federal Action Level is exceeded in more than 10 percent of all samples collected at the customers' tap. The most recent monitoring was conducted in 2020. Although the City's treated water has little or no detectable lead, studies were conducted and corrosion control implementation started. A corrosion control study was completed in 2019 which found that LADWP's corrosion control treatment is optimized and that it does not require the continued addition of a corrosion inhibitor. (f) The federal Stage 2 Disinfectants/Disinfection Byproducts Rule (Stage 2 D/DBPR) requires compliance monitoring and reporting for total trihalomethanes (TTHM) and five haloacetic acids (HAA5) based on Locational Running Annual Averages (LRAAs) of established monitoring locations. The Highest Locational Running Annual Averages (HLRAAs) of all LRAAs in the current calendar year for TTHM and HAA5 are reported.

TABLE II

Calendar Year 2020 Water Quality Monitoring Results

Aesthetic-based Secondary Drinking Water Standards (SMCLs) Substances Detected in Treated Water

Substances	Major Sources in Drinking Water		Meets Secondary Standard	State SMCL or Federal	Aque	ngeles educt n Plant"	"Nor Combine	thern ed Wells"		thern ed Wells"		WD uth Plant"		WD r Plant"		IWD n Plant"
			(YES/NO)	(SMCL)	Average	Range	Average	Range	Average	Range	Average	Range	Average	Range	Average	Range
Aluminum	Erosion of natural deposits; residue from some surface water treatment processes	µg/L	YES	200	<50	<50	<50	<50	<50	<50 - 91	149 (a)	80 - 210	137 (a)	<50 - 260	116 (a)	<50 - 220
Chloride	Runoff / leaching from natural deposits; seawater influence	mg/L	YES	500	37	32 - 46	41	32 - 45	41	37 - 89	93	93	94	93 - 94	52	51 - 54
Color, Apparent (unfiltered)	Naturally-occurring organic materials	ACU	YES	15	4	3 - 4	4	3 - 4	4	<3 - 5	1	1	1	1	2	1 - 3
Iron	Discharge from steel/ metal, plastic, and fertilizer factories	µg/L	YES	300	<20	<20	<20	<20	<20	<20 - 41.5	<20	<20	<20	<20	<20	<20
Odor	Naturally-occurring organic materials	TON	YES	3	<1	<1	<1	<1	<1	<1	2	2	2	2	2	2
рН	Naturally-occurring dissolved gases and minerals	Unit	YES	6.5 - 8.5	7.7	7.0 - 8.5	7.9	6.9 - 8.7	7.9	7.0 - 8.7	8.1	8.1	8.1	8.1	8.4	8.4
Specific Conductance	Substances that form ions when in water; seawater influence	µS/cm	YES	1600	357	270 - 750	535	290 - 780	535	300 - 780	966	963 - 968	970	964 - 975	460	451 - 468
Sulfate (as SO4)	Runoff / leaching from natural deposits	mg/L	YES	500	34	30 - 42	48	39 - 69	48	39 - 204	213	211 - 215	216	215 - 217	54	53 - 56
Total Dissolved Solids (TDS)	Runoff / leaching from natural deposits	mg/L	YES	1000	215	205 - 234	288	220 - 412	288	220 - 572	590	587 - 593	592	582 - 603	260	255 - 264
Turbidity (g)	Soil runoff	NTU	YES	5	<0.1	<0.1 - 0.1	0.1	<0.1 - 0.3	0.1	<0.1 - 0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Zinc	Runoff / leaching from natural deposits; industrial waste	µg/L	YES	5000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50

(a) Values reflect Highest Running Annual Average (HRAA). HRAA is the highest of all Running Annual Averages (RAAs) in the reported calendar year. RAA is a calculated average of all samples collected within the previous 12-month period, which may include test data from the previous calendar year. Hence, HRAA may be higher than the range, which is based on the test data in the reported calendar year. (g) The Secondary Maximum Contaminant Level for turbidity of treated water in the distribution system is 5 NTU at the entry points to the distribution system.

TABLE III Calendar Year 2020 Water Quality Monitoring Results Unregulated Drinking Water Substances Detected in Treated Water

Substances	Major Sources in Drinking Water	Units	State MCL (PHG)	"Los Angeles Aqueduct Filtration Plant"		"Northern Combined Wells"		"Southern Combined Wells"		"MWD Weymouth Plant"		"MWD Diemer Plant"		"MWD Jensen Plant"	
			(1110)	Average	Range	Average	Range	Average	Range	Average	Range	Average	Range	Average	Range
Alkalinity, Total (as CaCO3)	Erosion of natural deposits	mg/L	none	94	89 - 100	104	94 - 124	104	94 - 198	118	118 - 119	118	117 - 120	82	79 - 86
Ammonia + Chloramines (as N)	Drinking water disinfectant added for treatment	mg/L	none	0.4	0.4	0.5	0.3 - 0.9	0.5	0.3 - 0.9	NA	NA	NA	NA	NA	NA
Bicarbonate Alkalinity (as CaCO3)	Naturally-occurring dissolved gas; erosion of natural deposits	mg/L	none	114	108 - 121	128	115 - 152	128	115 - 242	NA	NA	NA	NA	NA	NA
Boron NL = 1000	Erosion of natural deposits	µg/L	none	377	345 - 423	327	298 - 339	327	142 - 339	130	130	130	130	170	170
Bromide	Runoff / leaching from natural deposits; seawater influence	µg/L	none	60	40 - 90	70	30 - 110	70	30 - 200	NA	NA	NA	NA	NA	NA
Calcium	Erosion of natural deposits; natural hot springs	mg/L	none	25	24 - 26	37	28 - 54	37	28 - 84	65	65	66	65 - 67	26	25 - 27
Chromium, Hexavalent	Industrial discharge; erosion of natural deposits	µg/L	(0.02)	<0.1	<0.1	0.2	0.1 - 0.6	0.2	0.1 - 2.4	<1	<1	<1	<1	<1	<1
Hardness, Total (as CaCO3)	Erosion of natural deposits	mg/L	none	95	90 - 102	139	106 - 204	139	106 - 287	262	256 - 268	265	261 - 269	108	107 - 110
Lithium	Erosion of natural deposits	µg/L	none	58	58 - 59	NT	NT	NT	NT	NA	NA	NA	NA	NA	NA
Magnesium	Erosion of natural deposits	mg/L	none	8	7 - 9	11	8 - 17	11	8 - 26	26	25 - 26	26	25 - 26	12	11 - 12
Phosphate (as PO4)	Erosion of natural deposits, agricultural run-off	µg/L	none	40	<31 - 60	65	43 - 104	60	40 - 100	NA	NA	NA	NA	NA	NA
Potassium	Erosion of natural deposits	mg/L	none	4	3 - 4	4	3 - 4	4	3 - 5	4.6	4.5 - 4.6	4.6	4.5 - 4.7	2.6	2.5 - 2.6
Silica (as SiO2)	Erosion of natural deposits	mg/L	none	17	14 - 19	16	15 - 21	16	11 - 23	NA	NA	NA	NA	NA	NA
Sodium	Erosion of natural deposits	mg/L	none	39	36 - 43	38	33 - 42	38	33 - 91	95	93 - 97	96	93 - 98	47	46 - 48
Temperature	Natural seasonal fluctuation	٥C	none	17	9 - 28	19	11 - 31	19	11 - 31	NA	NA	NA	NA	NA	NA
Total Coliform	Naturally present in the environment	NUM/100mL	(0)	<1	<1	<1	<1 - 58	<1	<1 - 58	NA	NA	NA	NA	NA	NA
Vanadium NL = 50	Erosion of natural deposits	µg/L	none	<3	<3	<3	<3	<3	<3 - 3	<3	<3	<3	<3	<3	<3

Unregulated Contaminant Monitoring Rule

The Unregulated Contaminant Monitoring Rule (UCMR) is a special program developed by the U.S. EPA that requires public water systems to monitor up to 30 selected contaminants of emerging concerns (CECs) once every five years.

During the fourth UCMR (UCMR4), LADWP monitored 29 unregulated contaminants. The contaminants monitored were total microcystins, microcystin-LA, microcystin-LF, microcystin-L, microcystin-LY, microcystin-RR, microcystin-YR, nodularin, anatoxin-a, cylindrospermopsin, germanium, manganese, alpha-hexachlorocyclohexane, chlorpyrifos, dimethipin, ethoprop, profenofos, tebuconazole, total permethrin (cis- & trans-), tribufos, oxyfluorfen, HAA5, HAA6Br, HAA9,1-butanol, 2-methoxyethanol, 2-propen-1-ol, butylated hydroxyanisole, o-toluidine and quinolone.

Most of the contaminants were not detected. Table IV below provides the contaminants that were detected during UCMR4. Contaminants that were detected were lower than the MCLs. Algal bloom and cyanotoxin were monitored at the source locations for each sampling event, and were not detected.

 TABLE IV
 Calendar Year 2020 Water Quality Monitoring Results

 The Fourth U.S. EPA Unregulated Contaminant Monitoring Rule (UCMR4)

 Substances Detected In Treated Water

2020 Drinking Water Quality Report | 18

						San Fernar	ndo Valley		Cen	tral LA	Western LA		Harbor/Eastern LA	
Substances Units		Meets MCL or NL (YES / NO)	State Primary Standard MCL or (NL)	State PHG or Federal (MCLG)	0	Los Angeles Aqueduct Filtration Plant		Northern Combined Wells		Southern Combined Wells		Los Angeles Aqueduct Filtration plant		tion System g Locations
					Average	Range	Average	Range	Average	Range	Average	Range	Average	Range
Bromide	mg/L	NA	NA	NA	0.06	0.04 - 0.09	0.07	0.03 - 0.11	0.07	0.03 - 0.2	0.06	0.04 - 0.09	NT	NT
Manganese NL = 500	µg/L	YES	(500)	NA	<0.4	<0.4 - 0.45	0.76	0.55 - 0.87	0.76	0.70 - 0.82	<0.4	<0.4 - 0.45	1.34	0.60 - 1.86
Total Organic Carbon (TOC)	mg/L	NA	NA	NA	1.6	1.5 - 1.7	1.3	1.1 - 1.6	1.3	0.3 - 2.2	1.6	1.5 - 1.7	7	4.4 - 12.8
HAA5	µg/L	YES	60	NA	3.3 (h)	1.9 - 4.4 (h)	3.3 (h)	1.9 - 4.4 (h)	3.6 (h)	2.7 - 5.0 (h)	4.0 (h)	2.7 - 7.4 (h)	6.0 (h)	5.3 - 7.0 (h)
HAABr6	µg/L	NA	NA	NA	2.1 (h)	1.0 - 3.7 (h)	2.1 (h)	1.0 - 3.7 (h)	2.7 (h)	2.2 - 3.8 (h)	2.6 (h)	1.5 - 4.6 (h)	3.7 (h)	3.3 - 4.3 (h)
HAA9	µg/L	NA	NA	NA	1.5 (h)	0.8 - 2.9 (h)	1.5 (h)	0.8 - 2.9 (h)	1.6 (h)	1.1 - 2.4 (h)	1.8 (h)	1.2 - 3.7 (h)	3.3 (h)	2.8 - 4.3 (h)

(h) For UCMR4 sampling, LADWP used the same established sampling locations as used for the Stage 2 Disinfectants/Disinfection By-Products Rule compliance monitoring. HAA5, HAABr6 and HAA9 were based on locational averages. These sample points are located throughout LADWP's distribution system. Data has been grouped by geographical area for the HAA results.

BOARD OF WATER AND POWER COMMISSIONERS

Cynthia McClain-Hill President

Susana Reyes Vice-President

Jill Banks Barad-Hopkins Commissioner

Nicole Neeman Brady Commissioner

Mia Lehrer Commissioner

General Information

This annual Drinking Water Quality Report (also known as a Consumer Confidence Report) is required by the California State Water Resources Control Board, Division of Drinking Water (SWRCB-DDW) and is prepared in accordance with their guidelines. The report is available online at www.ladwp.com/waterqualityreport. Copies may be requested by calling (213) 367-3182.

LADWP, the largest municipal utility in the nation, was established more than 100 years ago and provides a safe, reliable water and power supply to the city's more than 4 million residents and businesses. LADWP is governed by a five-member Board of Water and Power Commissioners, appointed by the Mayor and confirmed by the City Council. The Board meets regularly on the second and fourth Tuesdays of each month at 10:00 a.m.

LADWP EXECUTIVE TEAM

Martin L. Adams General Manager and Chief Engineer

Richard F. Harasick Senior Assistant General Manager, Water System

Nancy Sutley Senior Assistant General Manager of External and Regulatory Affairs and Chief Sustainability Officer

Ann Santilli Chief Financial Officer

Meetings are held at:

Los Angeles Department of Water and Power 111 North Hope Street, Room 1555H Los Angeles, CA 90012-2694

The meeting agenda is available to the public on the Thursday prior to the week of the meeting. You can access the Board agenda and view the meetings live online at www.ladwp.com/board or by calling (213) 367-1351.

For general information about LADWP, call (800) 342-5397 or visit www.ladwp.com.

For questions regarding this report, please call the Water Quality Hotline at (213) 367-3182.

THIS MESSAGE IS FOR NON-ENGLISH SPEAKING LADWP CUSTOMERS

This report contains important information about your drinking water. If you have any questions regarding this report, ask someone to translate it for you.

Spanish

Este informe contiene información importante sobre su agua potable. Si tiene alguna pregunta sobre este informe, por favor pídale a alguien que lo traduzca por usted.

Arabic

"هذا التقرير يحتوي على معلوماً ت مهمة تتعلق بمياه الشفة (أو الشرب). ترجم التقرير في تكلم مع شخص يستطيع أن يفهم التقرير ."

Armenian Այս հաշվետվությունը պարունակում է կարևոր տեղեկատվություն ձեր խմելու ջրի մասին։ Թարգմանե՛ք այն, կամ խոսե՛ք որևէ մեկի հետ, ով հասկանում է դրա բովանդակությունը։

Croatian

Ovo izvješće sadrži važne informacije o vašoj vodi za piće. Neka ga neko prevede ili razgovarajte s nekim tko ga je u stanju pročitati.

Chinese

此份有關您的飲用水質報告,內有重要資料和訊息。假如 您對此報告有任何疑問,請找人為您翻譯及解釋清楚。

Farsi (Persian)

French

Cé rapport contient des information importantes concernant votre eau potable. Veuillez traduire, ou parlez avec quelqu' un qui peut le comprendre.

German

Dieser Bericht enthält wichtige Information über Ihr Trinkwasser. Bitte übersetzen Sie ihn oder sprechen Sie mit jemandem, der ihn versteht.

Gujarati

आ अड़ेवाल आपना पीवाना पाણी विशे अगत्यनी माहिती धरावे છे. तेनुं ભાષાंतर કरो, अथवा ते सम%तुं होय तेवी डोઈ व्यक्ति साथै वात કरो.

Greek

Η κατοθεν αναφορα παρουσιαζη σπουδαιες πληροφορειες για το ποσιμο νερο σας. Πρακακλω να το μεταφρασετε η να το σξολειασετε με καποιον που το καταλαβαινη απολητως.

Hebrew

הדו"ח הזה מכיל מידע חשוב לגבי מי השתייה שלך תרגם את הדו"ח או דבר עם מישהו שמבין אותו

यह सूचना महत्वपूर्ण है । Hindi कृपा करके किसी से :सका अनुवाद करायें ।

Hungarian

Ez a jelentés fontos információt tartalmaz az Ön által fogyasztott ivóvízről. Fordítsa le, vagy beszéljen valakivel, aki megérti

Italian

Questo rapporto contiene informazioni inportanti che riguardano la vostra aqua potabile. Traducetelo, o parlate con una persona qualificata in grado di spiegarvelo.

Japanese この情報は重要です。 翻訳を依頼してください。

Khmer	របាយការណ៍នេះមានពតិមានសំខា
(Cambodian)	ន់អំពីទឹកបរិភោគ ។ ស្ទូមបកប្រែ
	ឬពិគ្រោះជាមួយអ្នកដែលម៉ើលយល់ របាយការណ៍នេះ ។

Korean 이 안내는 매우 중요합니다. 본인을 위해 번역인을 사용하십시요.

Polish

Ta broszura zawiera wazne informacje dotyczace jakosci wody do picia. Przetlumacz zawartosc tej broszury lub skontaktuj sie z osoba ktora pomoze ci w zrozumieniu zawartych informacji.

Portuguese

Este relatório contém informações importantes sobre a água que você bebe. Traduza-o ou converse a respeito dele com alquém que entenda o documento.

Russian

Этот отчет содержит важную информацию о вашей питьевой воды. Переведите его или поговорите с тем, кто это понимает.

Serbian

Овај извештај садржи важне информације о вашој води за пиће. Нека га неко преведе или разговарајте са неким ко може да га прочита.

Tagalog

Mahalaga ang ulat na ito ukol sa inyong tubig inumin. Para sa karagdagang impormasyon, mangyaring ipasalin ito sa salitang Tagalog.

Thai รายงานนี้ประกอบด้วยข้อมูลที่สำคัญเกี่ยวกับน้ำดื่มของคุณ หากคุณไม่สามารถเข้าใจเนื้อหา โปรดพดคยกับผู้ที่เข้าใจเนื้อหาในรายงานนี้

اس رپورٹ میں آپ کے پینے کے پانہ کے بار ے میں اہم معلومات ہے۔ اس کا Urdu ترجمہ کریں، یا کسی ایسے شخص سے بات کریں جو اسے سمجھ سکے۔

Vietnamese Chi tiết này thật quan trọng. Xin nhờ người dịch cho quý vị.

