ANTELOPE VALLEY – EAST KERN WATER AGENCY

2021 ANNUAL WATER QUALITY REPORT LOS ANGELES COUNTY SYSTEM

OFFICERS

DWAYNE CHISAM, P.E. General Manager and Chief Engineer

MATTHEW KNUDSON Assistant General Manager

> HOLLY H. HUGHES Secretary-Treasurer

BOARD OF DIRECTORS

KEITH DYAS Division 2 President

FRANK S. DONATO Division 3 Vice President

SHELLEY SORSABAL Division 1

GEORGE M. LANE Division 4

ROBERT A. PARRIS Division 5

AUDREY T. MILLER Division 6

GARY VAN DAM Division 7

March 15, 2022

Dear General Manager:

This is the 2021 Annual Water Quality Report from the Antelope Valley-East Kern Water Agency (AVEK). Since the water you obtain from AVEK represents one of your sources of water, we have included a summary of results for all analyses completed in 2021 for your convenience. If you find that you need copies of individual monitoring reports please feel free to contact me and I will be happy to provide those for you.

In accordance with the Consumer Confidence Report (CCR) guidance manuals issued by the State Water Resources Control Board and the United States Environmental Protection Agency, we are herein providing you with the monitoring data and other information you will need to produce your CCR.

AVEK provides some treated water to our customers in Acton by way of an intertie with Palmdale Water District (PWD). AVEK monitors the treated water quality provided by PWD at our Acton Water Treatment Plant before it reaches our first customer. The results of this monitoring have been included in this report. If you have specific questions regarding the quality of the raw water treated by Palmdale Water District, please contact them directly.

If you have any questions or need additional information, please call me at 661-943-3201. However, please do not designate AVEK or this office as your contact in your CCR. According to the State Board and EPA guidelines, the designated contact person should be someone from your system. While we are always happy to answer questions about AVEK water, we do not have the specific information necessary to answer questions about your water, blending practices or distribution systems.

Respectfull)

Jordan Wray
Laboratory Director

Antelope Valley-East Kern Water Agency

2021 Annual Water Quality Report

We are pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water we have delivered to you over the past year. Our goal is, and always has been, to provide to you a safe supply of drinking water.

Our main water source is the State Water Project, California Aqueduct. The State Water Resources Control Board (State Board) has assessed the vulnerability of the State Water Project as to possible contaminating activities. The assessment's description and discussion of vulnerability is as follows:

"The California Aqueduct originates at the Sacramento-San Joaquin Delta at Clifton Court Forebay. Water in the Delta originates in the Sacramento River watershed, the San Joaquin watershed, and the watershed drainage from the Mokelumne River, Stanislaus River, Merced River and several smaller rivers that drain the eastern slopes of the Sierra Nevadas. Located in these drainage areas are a broad variety of potential sources of contamination including municipal, industrial and agricultural activities. Also influencing the quality of water pumped from the Delta is the impact of the estuarial nature of the Delta and the naturally occurring salt-water intrusion which is dependent to a large extent on the inflow from the contributing rivers.

The possible contaminating activities present within the California Aqueduct watershed are described in the State Water Project Watershed Sanitary Survey conducted by the California Department of Water Resources and their consultants in 1990 and updated in 2016."

Our alternative water source is State Water Project water which has been stored in the aquifer at various underground storage facilities (i.e. "water banks") and is recovered for water quality purposes or supply purposes during times of drought. The vulnerability of the facilities was assessed in 2014 as follows:

"The wells are most vulnerable to contaminants from activities such as herbicide use along transportation corridors or road right-of-ways; agricultural/irrigation wells; irrigated crops; application of fertilizer, pesticides, and herbicides; agricultural drainage; and the raw State Water Project surface water used to recharge the groundwater basins. Other potential contaminating activities include the potential presence of certain unknown activities such as unregistered underground storage tanks."

A copy of these assessments may be viewed at, Antelope Valley-East Kern Water Agency, 6450 West Avenue N, Palmdale, CA 93551.

If you have any questions about this report or the Antelope Valley-East Kern Water Agency, please contact Jordan Wray, Laboratory Director at 661-943-3201. We want our valued customers to be informed about our Water Agency. If you want to learn more, please attend any of our regularly scheduled Board meetings. They are held on the second and fourth Tuesday of every month, 5:30 PM, at the Antelope Valley-East Kern Water Agency Office, 6450 West Avenue N, Palmdale, CA, 93551.

Antelope Valley-East Kern Water Agency routinely monitors for contaminants in our drinking water according to Federal and State laws. The table in this report, "2021 Annual Water Quality Report", shows the results of our monitoring for the period of January 1st to December 31st, 2021.

All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It is important to remember that the presence of these contaminants does not necessarily pose a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

We have learned through our monitoring and testing that some contaminants have been detected, however, we are proud to report that our drinking water meets all State and Federal requirements.

Total Coliform: Water systems are required to meet a strict standard for coliform bacteria. Coliform bacteria are usually harmless, but their presence in water can be an indication of disease-causing bacteria. When coliform bacteria are found, special follow-up tests are done to determine if harmful bacteria are present in the water supply. If the standard is exceeded, the water supplier must notify the public by newspaper, television or radio.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

The Antelope Valley-East Kern Water Agency provides treated surface water as a source of drinking water.

Treatment technique: Conventional

EPA Turbidity Performance Standards: Turbidity of the filtered water must:

- 1. Be less than or equal to 0.30 NTU in 95% of measurements in a month.
- 2. Not exceed 1 NTU at any time.

Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1: 100%

Highest single turbidity measurement during the year: 0.18 NTU

Percentage of samples < 0.30 NTU: 100%

The number of violations of any surface water treatment requirements: NONE

Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

The Antelope Valley-East Kern Water Agency also provides groundwater as a source of drinking water.

Treatment technique: Chlorination

EPA Groundwater Rule: AVEK meets the requirements of the Groundwater Rule by providing a minimum of 4-log reduction of viruses by continously providing a minimum free chlorine residual of 0.5 mg/L leaving the clearwell.

Lowest single free chlorine residual measurement during the year: 0.5

Number of violations of the Groundwater Rule: NONE

	MICROBIOI	LOGICAL CONTAMINANTS		
Parameter	Sampling Frequency	MCI	No. of Months in Violation	System Results
<u> </u>	<u>oampinig i roquonoj</u>	<u></u>	Trail of Monato III Violation	Range Average
Total Coliform Bacteria	120 - 150 / mo	5% positive	None	0%-0.8% 0.1%
Fecal Coliform/E. coli	120 - 150 / mo	1 pos. with 2 TC pos.	None	0% 0%
		Parameter Sampling Frequency Total Coliform Bacteria 120 - 150 / mo	Total Coliform Bacteria 120 - 150 / mo 5% positive	Parameter Sampling Frequency MCL No. of Months in Violation Total Coliform Bacteria 120 - 150 / mo 5% positive None

					INO	RGANIC COI	TAMINANT	S							
									RES	ULTS					
					Acton Plant	Eastsi	de Plant	Quartz I	Hill Plant	Raw I	nfluent		Wate	r Bank	
				PHG or	Effluent (CWR)	Effluen	t (CWR)	Effluent	t (CWR)	(State Wa	ter Project)	Effluent	(CWR)	We	ells
<u>Parameter</u>	<u>Units</u>	<u>MCL</u>	DLR	(MCLG)	Range Average	Range	Average	Range	Average	Range	Average	Range	Average	Range	<u>Average</u>
Aluminum	μg/L	1000	50	600	ND	ND	ND	ND	ND		ND			ND	ND
Antimony	μg/L	6	6	1	ND		ND		ND		ND			ND	ND
Arsenic	μg/L	10	2	0.004	ND		ND		ND	2.7-5.6	4.6	3.4-7.0	5.2	ND-22	4.8
Barium	μg/L	1000	100	2000	ND		ND		ND		ND			ND	ND
Beryllium	μg/L	4	1	1	ND		ND		ND		ND			ND	ND
Cadmium	μg/L	5	1	0.04	ND		ND		ND		ND			ND	ND
Chromium (Total)	μg/L	50	10		ND		ND		ND		ND			ND	ND
Chromium (Hexavalent)	μg/L	*	1	0.02	0.19		3.5		ND		ND			ND-5.2	3.1
Cyanide	μg/L	150	100	150	ND		ND		ND		ND			ND	ND
Fluoride	mg/L	2	0.1	1	0.19		0.11		ND		0.16			0.12-0.34	0.18
Lead	μg/L	15	5.0	0.2	ND		ND		ND		ND			ND	ND
Mercury	μg/L	2	1	1.2	ND		ND		ND		ND			ND	ND
Nickel	μg/L	100	10	12	ND		ND		ND		ND			ND	ND
Nitrate (as N)	mg/L	10	0.4	10	ND		2.4		0.85	0.54-0.77	0.65			0.72-7.8	4.2
Nitrite (as N)	mg/L	1	0.4	1	ND		ND		ND		ND			ND	ND
Nitrate+Nitrite (as N)	mg/L	10		10	ND		2.4		0.85		0.77			0.72-7.8	4.6
Perchlorate	μg/L	6	4	1	ND		ND		ND		ND			ND	ND
Selenium	μg/L	50	5	30	ND		ND		ND		ND			ND-7.0	0.58
Thallium	μg/L	2	1	0.1	ND		ND		ND		ND			ND	ND
Asbestos	MFL	7	0.2	7							ND			ND	ND

GENERAL PHYSICAL AND SECONDARY STANDARDS

^{*}There is currently no MCL for hexavalent chromium. The previous MCL of 0.010 mg/L was withdrawn on September 11, 2017.

		<u>RESULTS</u>											
				Actor	n Plant	Eastside Plant		Quartz Hill Plant		Raw I	nfluent	Wate	r Bank
				Effluent (CWR)		Effluent (CWR)		Effluent (CWR)		(State Water Project)) Wells	
<u>Parameter</u>	<u>Units</u>	<u>MCL</u>	DLR	Range	<u>Average</u>	Range	<u>Average</u>	Range	<u>Average</u>	Range	<u>Average</u>	<u>Range</u>	<u>Average</u>
Aluminum	μg/L	1000	50		ND	ND	ND	ND	ND		ND	ND	ND
Calcium	mg/L	no standard			29		48		26		27	63-93	76
Chloride	mg/L	250			96		37		59		57	54-92	72

						, ,		,	, .,	-				
				Acton	Plant	Eastsid	le Plant	Quartz H	Hill Plant	Raw Ir	nfluent	Water	Bank	1
				Effluent	(CWR)	Effluent	(CWR)	Effluent	(CWR)	(State Wat	ter Project)	We	ells	
<u>Parameter</u>	<u>Units</u>	<u>MCL</u>	DLR	Range	Average	Range	Average	Range	Average	Range	Average	Range	Average	
Color	Units	15			<5		<5	<5	<5		10	<5	<5	
Copper	μg/L	1000	50		ND		ND		ND		ND	ND	ND	
Foaming Agents (MBAS)	mg/L	0.5			ND		ND		ND		ND	ND	ND	
Hardness (Total) as CaCO3	mg/L	no standard			99		130		74		76	180-280	230	
Iron	μg/L	300	100		ND		ND		ND		ND	ND	ND	
Magnesium	mg/L	no standard			6.4		3.0		2.3		2.1	5.0-15	9.0	
Manganese	μg/L	50	20		ND		ND		ND		ND	ND	ND	
Odor @ 60 C	Units	3	1	<1	<1	<1	<1	<1	<1		1	<1	<1	
pH	Units	no standard		6.8-7.5	7.1	7.2-8.6	7.7	7.0-7.5	7.2	7.9-9.5	8.8	7.6-7.8	7.6	
Silver	μg/L	100	10		ND		ND		ND		ND	ND	ND	
Sodium	mg/L	no standard			73		40		60		59	38-62	45	
Specific Conductance	μmhos	1600			560	450-460	460	470-480	480	340-660	490	550-850	660	
Sulfate	mg/L	250	0.5		52		62		74		54	44-75	56	
Thiobencarb (Bolero)	μg/L	1	1		ND		ND		ND		ND	ND	ND	
Methyl tert-Butyl Ether (MTBE)	μg/L	5	3		ND		ND		ND		ND	ND	ND	
Total Dissolved Solids	mg/L	500			300		280		260		250	330-500	400	
Turbidity	Units	5		0.02-0.15	0.05	0.02-0.10	0.05	0.02-0.20	0.05	0.20-12	1.8	0.05-0.10	0.05	
Zinc	μg/L	5000	50		420		ND		650		ND	ND	ND	
Total Alkalinity (as CaCO3)	mg/L	no standard			63		96		47	62-96	76	140-200	160	
Bicarbonate Alkalinity(as HCO3)	mg/L	no standard			76		120		58		80	160-240	190	1
Carbonate (as CO3)	mg/L	no standard			ND		ND		ND		ND	ND	ND	1
Hydroxide (as OH)	mg/L	no standard			ND		ND		ND		ND	ND	ND	

					RADIOLOGICAL CONTAMINANTS				
						<u>RESULTS</u>			
Parameter	<u>Units</u>	MCL	DLR	PHG		Raw Inf	luent	Water Ba	ank Wells
	<u>011113</u>	IVIOL	DER	1110		(State Wate	r Project)	Range	<u>Average</u>
Gross Alpha	pCi/L	15	3				3.4	ND-9.4	5.3
Gross Beta	pCi/L	50	4			ND	ND		
Strontium 90	pCi/L	8	2	0.35			ND		
Tritium	pCi/L	20,000	1,000	400			ND		
Uranium	pCi/L	20	1	0.43				4.8-6.9	6.0
Radium 228	pCi/L		1	0.019					
Radium 226	pCi/L		1	0.05					

					VOLATILE ORGANIC CONTAMINANTS			
						RESI	JLTS	
Parameter	<u>Units</u>	MCL	DLR	PHG		State Water Project	Water B	ank Wells
<u>i didifictei</u>	Office	IVICE	DLIX	1110		<u>Average</u>	Range	<u>Average</u>
1,1,1-Trichlorethane (1,1,1-TCA)	μg/L	200	0.5	1000		ND	ND	ND
1,1,2,2-Tetrachloroethane	μg/L	1	0.5	0.1		ND	ND	ND
1,1,2-Trichloroethane (1,1,2-TCA)	μg/L	5	0.5	0.3		ND	ND	ND
1,1-Dichloroethane (1,1-DCA)	μg/L	5	0.5	3		ND	ND	ND
1,1-Dichloroethylene (1,1-DCE)	μg/L	6	0.5	10		ND	ND	ND
1,2,4-Trichlorobenzene	μg/L	5	0.5	5		ND	ND	ND
1,2-Dichlorobenzene (o-DCB)	μg/L	600	0.5	600		ND	ND	ND
1,2-Dichloroethane (1,2-DCA)	μg/L	0.5	0.5	0.4		ND	ND	ND
1,2-Dichloropropane	μg/L	5	0.5	0.5		ND	ND	ND
1,3-Dichloropropene (Total)	μg/L	0.5	0.5	0.2		ND	ND	ND
1,4-Dichlorobenzene (p-DCB)	μg/L	5	0.5	6		ND	ND	ND
Benzene	μg/L	1	0.5	0.15		ND	ND	ND
Carbon tetrachloride	μg/L	0.5	0.5	0.1		ND	ND	ND
cis-1,2-Dichloroethylene (c-1,2-DCE)	μg/L	6	0.5	100		ND	ND	ND
cis-1,3-Dichloropropene	μg/L					ND	ND	ND
Dichloromethane (Methylene Chloride)	μg/L	5	0.5	4		ND	ND	ND
Ethylbenzene	μg/L	300	0.5	300		ND	ND	ND
Methyl-tert-butyl ether (MTBE)	μg/L	13	3	13		ND	ND	ND
Monochlorobenzene (Chlorobenzene)	μg/L	70	0.5	70		ND	ND	ND
Styrene	μg/L	100	0.5	0.5		ND	ND	ND

Parameter	<u>Units</u>	MCL	DLR	PHG
<u>i alametei</u>	Office	WOL	DLIX	1110
Tetrachloroethylene (PCE)	μg/L	5	0.5	0.06
Toluene	μg/L	150	0.5	150
trans-1,2-Dichloroethylene (t-1,2-DCE)	μg/L	10	0.5	60
trans-1,3-Dichloropropene	μg/L			
Trichloroethylene (TCE)	μg/L	5	0.5	1.7
Trichlorofluromethane (Freon11)	μg/L	150	5	1300
Trichlorotrifluoroethane (Freon 113)	μg/L	1200	10	4000
Vinyl Chloride (VC)	μg/L	0.5	0.5	0.05
Xylenes (Total)	μg/L	1750	0.5	1800

CVAITI	ILTIC	ODCANIC	CHEMICALS

					SYNTHETIC ORGANIC CHEMICALS				
						RES	<u>SULTS</u>		
Parameter	Units	MCL	DLR (DL)	PHG		State Water Project	Water B	ank Wells	
<u>i didifictei</u>	Office	IVICE	DER (DE)	1110		Range Average	Range	<u>Average</u>	
Alachlor	μg/L	2	1	4			ND	ND	
Atrazine	μg/L	1	0.5	0.15			ND	ND	
Bentazon	μg/L	18	2	200			ND	ND	
Benzo(a)pyrene	μg/L	0.2	0.1	0.007			ND	ND	
Carbofuran	μg/L	18	5	0.7			ND	ND	
Chlordane	μg/L	0.1	0.1	0.03			ND	ND	
2,4-D	μg/L	70	10	20			ND	ND	
Dalapon	μg/L	200	10	790			ND	ND	
Dibromochloropropane (DBCP)	μg/L	0.2	0.01	0.0017			ND	ND	
Di(2-ethylhexyl)adipate	μg/L	400	5	200			ND	ND	
Di(2-ethylhexyl)phthalate	μg/L	4	3	12			ND	ND	
Dinoseb	μg/L	7	2	14			ND	ND	
Diquat	μg/L	20	4	6			ND	ND	
Endothall	μg/L	100	45	94			ND	ND	
Endrin	μg/L	2	0.1	0.3			ND	ND	
Ethylene Dibromide (EDB)	μg/L	0.05	0.02	0.01			ND	ND	
Glyphosate	μg/L	700	25	900			ND	ND	
Heptachlor	μg/L	0.01	0.01	0.008			ND	ND	
Heptachlor Epoxide	μg/L	0.01	0.01	0.006			ND	ND	
Hexachlorobenzene	μg/L	1	0.5	0.03			ND	ND	
Hexachlorocyclopentadiene	μg/L	50	1	2			ND	ND	
Lindane	μg/L	0.2	0.2	0.032			ND	ND	
Methoxychlor	μg/L	30	10	0.09			ND	ND	
Molinate	μg/L	20	2	1			ND	ND	
Oxamyl	μg/L	50	20	26			ND	ND	
Pentachlorophenol	μg/L	1	0.2	0.3			ND	ND	
Picloram	μg/L	500	1	166			ND	ND	
Polychlorinated Biphenyls	μg/L	0.5	0.5	0.09			ND	ND	
Simazine	μg/L	4	1	4			ND	ND	
Thiobencarb (Bolero)	μg/L	70	1	42			ND	ND	
Toxaphene	μg/L	3	1	0.03			ND	ND	
2,3,7,8-TCDD (Dioxin)	pg/L	30	5	0.05			ND	ND	
2,4,5-TP (Silvex)	μg/L	50	1	3			ND	ND	
1,2,3-Trichloropropane	μg/L	0.005	0.005	0.0007			ND	ND	1

			DISINFECTION RESIDUAL, PRECURSORS, a	and BYPRO	DUCTS
_	 	_			

Type of Sample(s)	Parameter	<u>Units</u>	MCL/MRDL	DLR	MRDLG	<u>RESULTS</u>	
Type of <u>cample(s)</u>	<u>i didifictei</u>	Office	WOLIVINGE	DLIX	WINDLO	Range	<u>Average</u>
Distribution	Chlorine (as total Cl2)	mg/L	4.0		4	0.30 - 1.68	1.12
Treated Water	Total Organic Carbon (TOC)	mg/L	Treatment Requirement	0.3		0.52 - 1.9	1.2
State Water Project	Total Organic Carbon (TOC)	mg/L	Treatment Requirement	0.3		0.72 - 3.2	1.9
Distribution	Stage 2 D/DBP Rule Total Trihalomethanes	μg/L	80**			3.2 - 54	41#
Distribution	Stage 2 D/DBP Rule Total Haloacetic Acids	μg/L	60**			ND - 8.5	4.9#
Treated Water	Bromate	μg/L	10 ⁺	1.0		ND - 4.5	0.82

^{**} Stage 2 D/DBP Rule Total THMs and Total HAAs compliance is based upon Locational Running Annual Averages.

[#] Location with the highest TTHM average

^{*} Compliance is based on the running annual average computed quarterly, of monthly samples, collected at the entrance to the distribution system.

DEFINITIONS and FOOTNOTES:

Plant Effluent, CWR, is finished, treated drinking water.

Raw Water is the Source Water, the California Aqueduct or wells, prior to treatment.

Units: mg/L = milligrams per liter, parts per million (ppm)

μg/L = micrograms per liter, parts per billion (ppb)

pg/L = picograms per liter, parts per quadrillion (ppg)

umhos = micromhos, a measure of specific conductance

pCi/L = pico Curies per liter

< = less than

> = greater than

ND = none detected above the DLR

NTU = nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

MCL: Maximum Contaminant Level. The highest level of a contaminant that is allowed in drinking water. MCLs are set by the US Environmental Protection Agency or the State Water Resources Control Board as close to the PHGs and MCLGs as is economically or technologically feasible.

MRDL: Maximum Residual Disinfectant Level. The level of a disinfectant added for water treatment that may not exceeded at the consumer's tap.

DLR: Detection Limit for purposes of Reporting.

(DL): Detection limit determined by the Laboratory when no DLR has been established.

MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

MRDLG: Maximum Residual Disinfectant Level Goal. The level of a disinfectant added for water treatment below which there is no known or expected risk to health. MRDLGs are set by the US Environmental Protection Agency.

PHG: Public Health Goal. The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Office of Environmental Health Hazard

Primary Drinking Water Standard: Primary MCLs, specific treatment techniques adopted in lieu of primary MCLs, and monitoring and reporting requirements for MCLs that are specified in regulations. Assessment.

Secondary Standards: Aesthetic standards established by the State Water Resources Control Board.

All analyses performed by ELAP certified laboratories: AVEK Water Agency, Eurofins Eaton Analytical Laboratories, or Eurofins subcontract lab.

STAGE 2 DISINFECTION BYPRODUCT RULE TOTAL TRIHALOMETHANE (TTHM) QUARTERLY SUMMARY REPORT

Water System Name:	Antelope Valley-East Kern Water Agency	
System No.	1910045	

OEL (TTHM)	Exceed OEL (Y/N)
(TTHM)	OEL
26.25	(Y/N)
26.25	(.,,
36.25	N
24.00	Ν
3.40	N
6.00	N
20.50	N

Comments:			

Note: If your OEL is higher than the TTHM MCL at any location in the distribution system, you must conduct an operational evaluation by examining the system treatment and distribution operational practices, including: storage tank operations; excess storage capacity; distribution system flushing; changes in sources or source water quality; treatment changes; and any problems that may contribute to TTHM formation. From this evaluation you must identify what steps could be taken to minimize future OEL exceedances: Please submit your operational evaluation report to the State for review within 90 days.

Name & Title of Person Submitting Report

Jordan Wray - Laboratory Director

Date

1/5/2022

STAGE 2 DISINFECTION BYPRODUCT RULE HALOACETIC ACIDS (HAA5) OLIARTERIA SLIMMARY REPORT

Water System Name:	Antelope Valley-East Kern Water Agency												
System No.	1910045												
	HAA5 (ppb)												
		Monitori	ng Periods										
	MP1	MP2	МР3	MP4 (Current Qtr)	LRAA (HAA5)	Meets Standard?	OEL (HAA5)	OEL					
Sample Date (month/date/year):	02/18/21	05/20/21	08/19/21	11/18/21	1	(Y/N)		(Y/N)					
Vincent Tank	4.4	5.1	ND	2.4	2.98	Υ	2.48	N					
LVAV	8.5	6.0	ND	5.2	4.93	Υ	4.10	N					
110th/R	ND	ND	ND	ND	0.00	Y	0.00	N					
165th	ND	ND	ND	ND	0.00	Υ	0.00	N					
5th/M	3.8	4.3	2.2	3.8	3.53	Υ	3.53	N					

omments:	

Note: If your OEL is higher than the HAA5 MCL at any location in the distribution system, you must conduct an operational evaluation by examining the system treatment and distribution operational practices, including: storage tank operations; excess storage capacity; distribution system flushing; changes in sources or source water quality; treatment changes; and any problems that may contribute to HAA5 formation. From this evaluation you must identify what steps could be taken to minimize future OEL exceedances: Please submit your operational evaluation report to the State for review within 90 days.

Name & Title of Person Submitting Report

Jordan Wray- Laboratory Director

Date

1/5/2022

1/5/2022

Date

Quarterly Bromate Report for Disinfection Byproducts Compliance (in µg/L or ppb)

Syste	em Name: Antelope Va	alley-Ea	st Kern	Water F	Agency	-	Syst	tem No.:	:1	1910045		Year:	r: 202	21	Quarte	er:	4TH	_			
		4 Y 22	20	020			19	st Qtr.			2n	nd Qtr.		3rd Qtr.					4th	h Qtr.	
Sa	ample Date (month/date):	1st Q	2nd Q	3rd Q	4th Q	1/13	2/10	3/10	Quarterly Average		5/12	6/9	Quarterly Average	7/14	8/11	9/8	Quarterly Average				Quarterly Average
Site 1	1 - QHWTP	1.6	1.3	5.4	3.9	OFF	OFF	OFF	0.0	ND	3.9	3.0	2.3	3.6	4.5	ND	2.7	OFF	OFF	OFF	OFF
Site 2	2 - EWTP	1.3	1.0	3.0	3.3	OFF	OFF	ND	0.0	ND	ND	ND	0.0	1.0	2.0	1.6	1.5	OFF	OFF	OFF	OFF
Site 3	3 - AWTP	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Syste	em Quarterly Average	1.5	1.2	4.2	3.6				0.0	4	7 5 7 7 8		1.2				2.1		7 2.v.	71 7	0.0
																	John Charles Services	A.C. T. Vincery	Mary and the state of the state		T - T-A-T
Runr	ning Annual Average				2.6				2.2	6 17 S		874 ST. 1974	2.2				1.7				0.8
																		N. P. S.	ACA March on the Control		At the property forms form
	Meets Standard?* (check box)								Yes ✓ No				Yes ✓ No				Yes ✓ No			, ,	Yes ✓ No
	ify the sample locations in								_												
Site		S	Sample L	_ocation	î.				1				Samples c								
1	1 Quartz Hill Clear Well Reservoir						1		each tr	reatmer	ent plant us	ising oz									
2	2 Eastside Clear Well Reservoir								1	,	ozone	system	n shutdow	/n.							
3	Acton Clear Well Reserve	oir							1	!	i										
									1	- 1	í										

Signature

*If, during the first year of monitoring, any individual quarter's average will cause the running annual average of that system to exceed the standard, then the system is out of compliance at the end of that quarter.

Quarterly Report for Disinfectant Residuals Compliance For Systems Using Chlorine or Chloramines

System Name:	Antelope Valley-East Kern Water Agency	System No.:	1	1910045
Calendar Year:	2021	Quarter:	4TH	

		1st Quarter	
	Month	Number of Samples Taken	Monthly Ave. Chlorine Level (mg/L)
	April		1.10
ı	May		1.04
	June		1.10
Previous Year	July		1.16
ious	August		1.17
Prev	September		1.11
ı	October		1.08
П	November		1.06
	December		1.08
rear	January	120	1.09
Current Year	February	120	1.05
_	March	150	1.08
Rι	unning Annual A	verage (RAA):	1.09
	eets standard? e. RAA < MRDL of	f 4.0 mg/L as Cl2)	YES

Г	2nd Quarter							
	Month	Number of Samples Taken	Monthly Ave. Chlorine Level (mg/L)					
	July		1.16					
ear.	August		1.17					
S Ye	September		1.11					
Previous Year	October		1.08					
ď	November		1.06					
	December		1.08					
	January		1.09					
ar	February		1.05					
ıt Ye	March		1.08					
Current Year	April	120	1.10					
O	May	120	1.11					
	June	150	1.14					
Rι	unning Annual A	verage (RAA):	1.10					
	eets standard? e. RAA < MRDL of	f 4.0 mg/L as Cl2)	YES					

	3rd Quarter						
	Month	Number of Samples Taken	Monthly Ave. Chlorine Level (mg/L)				
Ϋ́	October		1.08				
Previous Yr	November		1.06				
Pa	December		1.08				
	January		1.09				
ı	February		1.05				
ı	March		1.08				
rear	April		1.10				
Current Year	May		1.11				
S	June		1.14				
ı	July	120	1.15				
	August	150	1.18				
	September	120	1.17				
Rι	inning Annual A	verage (RAA):	1.11				
	ets standard? e. RAA < MRDL o	f 4.0 mg/L as Cl2)	YES				

	4th Quarter							
Month		Number of Samples Taken	Monthly Ave. Chlorine Level (mg/L)					
	January		1.09					
	February		1.05					
	March		1.08					
	April		1.10					
ar	May		1.11					
Current Year	June		1.14					
urre	July		1.15					
٥	August		1.18					
	September		1.17					
	October	120	1.16					
	November	150	1.07					
	December	123	1.16					
	inning Annual A	verage (RAA):	1.12					
Meets standard? (i.e. RAA < MRDL of 4.0 mg/L as Cl2)								

Comments:		W.
Signature: _	Date:	1/5/2022

Antelope Valley-East Kern Water Agency LA System No. 1910045

TOC Removal Running Annual Average

Sample		Alkalinity	Raw TOC	Treated TOC	Actual %	Required %	"TOC Removal Ratio"
Date	Plant	mgCaCO3/L	mg/L	mg/L	TOC reduction	TOC reduction	actual % /required %
1/13/2021	QHWTP	80.6	2.09	1.27	39.2	25	1.6
"	EWTP AWTP	plant off					
	AVVIF	plant off					
2/10/2021	QHWTP	89.3	2.05	1.32	35.6	25	1.4
2/10/2021	EWTP	86.6	2.09	1.39	33.5	25	1.3
	AWTP	plant off					
		•					
3/10/2021	QHWTP	96.2	2.07	1.35	34.8	25	1.4
"	EWTP	97.4	2.10	1.42	32.4	25	1.3
"	AWTP	plant off					
4/14/2021	OLIM/TD	00.0	0.04	4.05	20.0	0.5	4.0
4/14/2021	QHWTP EWTP	82.3 81.0	2.01 2.28	1.35 1.45	32.8 36.4	25 25	1.3 1.5
"	AWTP	plant off	2.20	1.45	30.4	25	1.5
	AWIF	plant on					
5/12/2021	QHWTP	81.7	1.42	1.03	27.5	25	1.1
"	EWTP	81.5	2.17	1.47	32.3	25	1.3
"	AWTP	plant off					
6/9/2021	QHWTP	75.6	1.52	1.06	30.3	25	1.2
	EWTP	75.0	2.07	1.57	24.2	25	1.0
•	AWTP	plant off					
7/14/2021	QHWTP	69.3	1.82	1.15	36.8	25	1.5
"	EWTP	70.3	2.16	1.39	35.6	25	1.4
"	AWTP	plant off					
8/11/2021	QHWTP	67.0	2.28	1.46	36.0	25	1.4
"	EWTP	65.0	3.24	1.92	40.7	25	1.6
	AWTP	plant off					
9/8/2021	QHWTP	73.5	1.31	0.91	30.5	25	1.2
"	EWTP	59.4	1.78	1.09	38.8	35	1.1
	AWTP	plant off	0		00.0	00	
		•					
10/13/2021	QHWTP	69.9	1.72	1.15	33.1	25	1.3
"	EWTP	plant off					
"	AWTP	plant off					
11/10/2021	QHWTP	62.7	1.04	0.69	33.7	25	1.3
11/10/2021	EWTP	plant off	1.04	0.09	33.1	20	1.3
"	AWTP	plant off					
12/8/2021	QHWTP	61.5	0.72	0.52	27.8	25	1.1
	EWTP	plant off					
"	AWTP	plant off					
	Minimum	59.4	0.7	0.5	24.2		
	Maximum	97.4	3.2	1.9	40.7		
	RAA	76.3	1.9	1.2	33.6		

Running Annual Average (RAA)

<u>1.3</u>

Title 22 California Code of Regulations, Chapter 15.5, Article 5:

Required percent TOC reduction**

Table 64536.2-A Source Water Alkalinity Raw TOC 0-60 <60 - 120 >120 >2.0 - 4.0 35.0 % 25.0 % 15.0 % >4.0 - 8.0 45.0 % 35.0 % 25.0 % 30.0 % >8.0

50.0 % 40.0 % **If one or more of the section 64636.4(b) 1-6 conditions are met, the system may assign a monthly value of 1 for the TOC removal ratio in lieu of the calculated value. List condition when used:_

- 1. The system's source water TOC level, prior to any treatment is less than or equal to 2.0 mg/L
- 1. The system's treated water TOC level is less than or equal to 2.0 mg/L

 2. The system's source water SUVA, prior to any treatment, is less than or equal to 2.0 L/mg-m

 4. The system's finished water SUVA is less than or equal to 2.0 L/mg-m

 5. A system practicing softening removes at least 10 mg/L of magnesium hardness (as CaCO3)

- 6. A system practicing enhanced softening lowers alkalinity below 60 mg/L (as CaCO3)