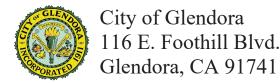


The 2017 City of Glendora, Water Division Consumer Confidence Report is now available!


The Consumer Confidence Report (CCR) is an annual water quality report that the California Safe Drinking Water Act (SDWA) requires the City of Glendora to provide you with. The purpose of the CCR is to raise customers' awareness of the quality of their drinking water, where their drinking water comes from, what it takes to deliver water to their homes, and the importance of protecting drinking water sources. The City of Glendora is proud to share with its customers and residents that the drinking water being provided to you has met or exceeded all standards set by the State Water Resources Control Board.

Please go to <u>www.CityOfGlendora.Org/2017ccr</u> to view your 2017 Consumer Confidence Report and to learn more about your drinking water.

If you would like a paper copy of the 2017 Consumer Confidence Report mailed to you or would like to speak with someone about the report, please call (626) 852-4838.

<u>THIS NOTICE CONTAINS INSTRUCTIONS FOR YOU TO OBTAIN</u> <u>IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER. TRANSLATE</u> IT, OR SPEAK WITH SOMEONE WHO UNDERSTANDS IT.

Este reporte contiene las instrucciones mas recientes para obtener informacion importante sobre su agua potable. Traducir, o hablar con alguien que lo entienda.

2017 CONSUMER CONFIDENCE REPORT

CITY OF GLENDORA

2017 CONSUMER **CONFIDENCE REPORT**

INTRODUCTION

The City of Glendora is committed to keeping you informed about the guality of your drinking water. This report is provided to you annually. It includes information describing where your drinking water comes from, the constituents found in your drinking water and how the water quality compares with the regulatory standards. We are proud to report that during 2017, the drinking water provided by the City of Glendora met or surpassed all Federal and State drinking water standards. We remain dedicated to providing you with a reliable supply of high quality drinking water.

Regularly scheduled meetings of the City of Glendora City Council are held on the second and fourth Tuesday of each month at 7:00 PM at 116 E. Foothill Blvd., Glendora, California 91741. These meetings provide an opportunity for public participation in decisions that may affect the quality and reliability of your water.

WHERE DOES MY DRINKING WATER COME FROM?

During 2017, the City of Glendora provided water to customers from groundwater from the Main San Gabriel Basin. The water is disinfected with chlorine before it is delivered to your home.

WHAT ARE WATER QUALITY STANDARDS?

In order to ensure that tap water is safe to drink, the United States Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of Drinking Water (DDW) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water standards established by USEPA and DDW set limits for substances that may affect consumer health or aesthetic qualities of drinking water. The chart in this report shows the following types of water quality standards:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. •

- Primary Drinking Water Standard: MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.
- follow.
- supervisors).

In addition to mandatory water quality standards, USEPA and DDW have set voluntary water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful quideposts and direction for water management practices. The chart in this report includes three types of water quality goals:

- Protection Agency.

WHAT CONTAMINANTS MAY BE PRESENT IN SOURCES OF DRINKING WATER?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Regulatory Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must

Notification Level (NL): An advisory level which, if exceeded, requires the drinking water system to notify the governing body of the local agency in which users of the drinking water reside (i.e. city council, county board of

• Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by USEPA.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants. such as viruses and bacteria, that may come from sewage treatment plants, septic agricultural systems, livestock operations and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturallyoccurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Radioactive contaminants that can be naturally-occurring or be the result of oil and gas production and mining activities.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gasoline stations, urban stormwater runoff, agricultural application and septic systems.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

WHAT IS IN MY DRINKING WATER?

Your drinking water is tested by certified professional water system operators and certified laboratories to ensure its safety. The City of Glendora routinely tests drinking water from its wells and distribution system pipes for bacterial and chemical contaminants. The chart in this report shows the average and range of concentrations of the constituents tested in your drinking water during year 2017 or from the most recent tests. The State allows the City to monitor for some contaminants less than once per vear because the concentrations of these contaminants do not change frequently. Some of our data, although representative, are more than one year old. The chart lists all the contaminants detected in your drinking water that have federal and state drinking water standards. Detected

unregulated contaminants of interest are also included.

ARE THERE ANY PRECAUTIONS THE PUBLIC SHOULD CONSIDER?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) quidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

DRINKING WATER SOURCE ASSESSMENT

In accordance with the federal Safe Drinking Water Act, an assessment of the drinking water sources for the City of Glendora was completed in December 2001. The purpose of the drinking water source assessment is to promote source water protection by identifying types of activities in the proximity of the drinking water sources which could pose a threat to the water quality. The assessment concluded that City of Glendora's groundwater wells are considered most vulnerable to the following activities or facilities associated with contaminants detected in the water supply: crops irrigation, fertilizer, pesticide/herbicide application, and known contaminant plumes. In addition, the groundwater wells are considered most vulnerable to the following facilities not associated with contaminants detected in the water supply: utility stations maintenance areas, above ground storage tanks and high density of housing. A copy of the complete assessment is available at the City of Glendora at 116 E. Foothill Blvd., Glendora, CA 91741. You may request a summary of the assessment to be sent to you by contacting Mr. Steve Patton at 626-914-8249.

LEAD IN TAP WATER

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Glendora is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water. testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at https://www.epa.gov/your-drinking-

water/basic-information-about-leaddrinking-water

COLIFORM BACTERIA

This Consumer Confidence Report reflects changes in drinking water regulatory requirements during 2016. All water systems are required to comply with the state Total Coliform Rule. Effective April 1, 2016, all water systems are also required to comply with the federal Revised Total Coliform Rule. The new federal rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E. coli bacteria). The USEPA anticipates greater public health protection as the new rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system.

QUESTIONS?

For more information or questions regarding this report, please contact Mr. Steve Patton at 626-914-8249.

Este informe contiene información muy importante sobre su agua potable. Para mas información ó traducción, favor de contactar a Mr. Steve Patton. Telefono: 626-914-8249.

此份有關你的食水報告,內有重要資料和訊息,請找 他人為你翻譯及解釋清楚。

Mr. Steve Patton at 626-914-8249

	ICL	PHG (MCLG)	DLR		DWATER	MCL	Typical Source of Contaminant
	or RDL] [`or´ [MRDLG]	DLK	Results (a)	Range Min-Max	Violation?	
			Standa	. ,	MIT MOX		
INORGANIC CHEMICALS (b)							
Arsenic (µg/I)	10	0.004	2	<2	ND - 3.1	No	Runoff/leaching from natural deposits
(5,)	1	2	0.1	0.14	ND - 0.28	No	Runoff/leaching from natural deposits
Fluoride (mg/l)	2	1	0.1	0.3	0.19 - 0.41	No	Naturally occurring and added to water
	10	10	0.4	<0.4	ND - 2.9	No	Runoff and leaching from fertilizer use
Perchlorate (ug/l)	6	1	4	<4	ND - 4	No	Industrial waste discharge
RADIOACTIVITY (b)	15	(0)	3	<3	ND - 3.7	No	Runoff/leaching from natural deposits
1 3 (1)	20	(0) 0.43	3 1	<1	ND - 3.7 ND - 2.2	No	Runoff/leaching from natural deposits
SECONDARY DRINKING WATER STAND							Runon/leaching from hatural deposits
	500	NA	NA	48	27 - 63	No	Runoff/leaching from natural deposits
Odor (Threshold Odor Number)	3	NA	1	1	1	No	Naturally occurring organic materials
	600	NA	NA	560	340 - 830	No	Substances that form ions in water
	500	NA	0.5	46	23 - 81	No	Runoff/leaching from natural deposits
	000						· ·
(0)		NA	NA	350	200 - 570	No	Runoff/leaching from natural deposits
Turbidity (NTU) OTHER CONSTITUENTS OF INTEREST (5	NA	0.1	<0.1	ND - 0.2	No	Erosion of natural deposits
	D) _ = 1	NA	NA	<0.07	ND - 0.09	N/A	Industrial Waste Discharge
· · · · · · · · · · · · · · · · · · ·							Industrial Waste Discharge
, , , ,	VA	NA	NA 0.1	160	100 - 260	N/A	Runoff/leaching from natural deposits
(0)	L=1	NA	0.1	<0.1	ND - 0.17	N/A	Runoff/leaching from natural deposits
	=800	NA	NA	48	29 - 66	N/A	Byproduct of drinking water chlorination; industrial processes
	NA FO	0.02	1	<1	ND - 1.8	N/A	Runoff/leaching from natural deposits; industrial discharge
,,	50	(100)	NA	< 0.2	ND - 0.31	N/A	Discharge from steel and pulp mills; natural deposits erosion
	NA	NA	NA	210	95 - 390	N/A	Runoff/leaching from natural deposits
, , , , , ,	NA	NA	NA	2.1	1.8 - 2.3	N/A	Erosion/leaching from natural deposits
	NA	NA	NA	7.5	7.3 - 7.6	N/A	Dissolved carbon dioxide and minerals
	NA	NA	NA	38	26 - 55	N/A	Runoff/leaching from natural deposits
	NA	NA	NA	460	430 - 490	N/A	Erosion/leaching from natural deposits
	= 50	NA	NA	1.6	1.2 - 2	N/A	Naturally occuring; industrial waste discharge
DISTRIBUTION SYSTEM SAMPLES							
	.0%	(0)	NA	3.5%		No	Naturally present in the environment
	80	NA	NA	46	8.4 - 54	No	Byproducts of chlorine disinfection
	60	NA	NA	9.3	ND - 11	No	Byproducts of chlorine disinfection
	4]	[4]	NA	0.85	ND - 1.7	No	Disinfectant added for treatment
, (6)	15	NA	NA	ND	ND - 10	No	Runoff/leaching from natural deposits
(, (6)	3	NA	1	1	1 - 2	No	Runoff/leaching from natural deposits
Turbidity (NTU) (g)	5	NA	0.1	0.28	ND - 14	No	Runoff/leaching from natural deposits
AT-THE-TAP LEAD AND	n Level	Health	DLR	90th Perc	entile Value	MCL Violation2	Typical Source of Contaminant
AT-THE-TAP LEAD AND COPPER Actio		Goal				Violation?	
AT-THE-TAP LEAD AND COPPER Actio	15	Goal 0.2	5	1	ND	Violation? No	Corrosion of household plumbing
AT-THE-TAP LEAD AND COPPER Actio	15 1.3	Goal 0.2 0.3	5 0.05	100		Violation?	
AT-THE-TAP LEAD AND COPPER Actio	15 1.3	Goal 0.2 0.3	5 0.05 S OF IN	100	ND	Violation? No	Corrosion of household plumbing Corrosion of household plumbing
AT-THE-TAP LEAD AND COPPER Actio	15 1.3 IER CONS	Goal 0.2 0.3 STITUENTS	5 0.05	TEREST	ND .54	Violation? No No	Corrosion of household plumbing
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Copper (mg/l) (h) DISTRIBUTION SYSTEM SAMPLESOTH Notification CONSTITUENTS AND (UNITS) Notification	15 1.3 IER CONS	Goal 0.2 0.3 STITUENTS PHG	5 0.05 S OF IN	TEREST Results	ND .54 Range	Violation? No No MCL	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Image: Comparison of the second seco	15 1.3 IER CONS ication evel	Goal 0.2 0.3 STITUENTS PHG (MCLG)	5 0.05 S OF IN DLR	TEREST Results (a)	ND .54 Range Min-Max	Violation? No No MCL Violation?	Corrosion of household plumbing Corrosion of household plumbing
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Image: Comparison of the particular system of the pa	15 1.3 IER CONS ication evel	Goal 0.2 0.3 STITUENTS PHG (MCLG) NA	5 0.05 S OF IN DLR NA	TEREST Results (a) 60	ND .54 Range Min-Max 57 - 62	Violation? No MCL Violation? N/A	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h)	15 1.3 IER CONS ication evel 800 NA	Goal 0.2 0.3 STITUENTS PHG (MCLG) NA 0.02	5 0.05 S OF IN DLR NA NA	0 TEREST Results (a) 60 0.27	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28	Violation? No MCL Violation? N/A N/A N/A	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h)	15 1.3 IER CONS ication evel 800 NA L = 50	Goal 0.2 0.3 STITUENTS PHG (MCLG) NA 0.02 (100)	5 0.05 S OF IN DLR NA NA NA	100 000 000 000 000 000 000 000 000 000	ND .54 Range Min-Max 57 - 62 0.25 - 0.29	Violation? No MCL Violation? N/A N/A	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h)	15 1.3 IER CONS ication evel 800 NA L = 50 NA	Goal 0.2 0.3 STITUENTS PHG (MCLG) NA 0.02 (100) NA	5 0.05 S OF IN DLR NA NA NA NA	100 TEREST Results (a) 60 0.27 0.27 2.1	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2	Violation? No MCL Violation? N/A N/A N/A N/A	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h)	15 IER CONS ication avel 300 NA L = 50 NA NA NA	Goal 0.2 0.3 TITUENT PHG (MCLG) NA 0.02 (100) NA NA	5 0.05 S OF IN DLR NA NA NA NA NA	0 TEREST Results (a) 60 0.27 0.27 2.1 450 1.7	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460	Violation? No No Violation? N/A N/A N/A N/A N/A N/A	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h)	15 1.3 ication evel 3000 NA L = 50 NA NA 50	Goal 0.2 0.3 TITUENT PHG (MCLG) NA 0.02 (100) NA NA NA	5 0.05 S OF IN DLR NA NA NA NA NA NA	Image: Non-State Image: Non-State<	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7	Violation? No Violation? N/A N/A N/A N/A N/A N/A FOOTNOTE	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Image: Comparison of the compa	15 I.3 IER CONS ication evel 800 NA L = 50 NA NA 50	Goal 0.2 0.3 TITUENT PHG (MCLG) NA 0.02 (100) NA NA NA	5 0.05 S OF IN DLR NA NA NA NA NA NA NA	Image: Non-Stress Image: No-Stress Image: No-Stres	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND	Violation? No Violation? N/A N/A N/A N/A N/A N/A FOOTNOTE	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Image: Comparison of the compa	15 IER CONS ication evel 800 NA L = 50 NA NA 50 19	Goal 0.2 0.3 STITUENTS PHG (MCLG) NA 0.02 (100) NA NA NA NA NA MRDLG = M NA = No Ap	5 0.05 S OF IN DLR NA NA NA NA NA NA NA NA NA	Image: Non-Stress of the second sec	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND	Violation? No MCL Violation? N/A N/A N/A N/A N/A N/A N/A N/A D/A EOOTNOTE	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Source of Contaminant PHG = Public Health Goal
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Image: Comparison of the component of the comparison of the compar	15 1.3 ication evel 3000 NA L = 50 NA 50 19 19	Goal 0.2 0.3 STITUENTS PHG (MCLG) NA 0.02 (100) NA NA NA NA NA MRDLG = M NA = No Ap	5 0.05 S OF IN DLR NA NA NA NA NA NA Maximum plicable etected c	Image: Non-State Name Image: Name<	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND sinfectant Leve	Violation? No MCL Violation? N/A N/A N/A N/A N/A N/A N/A N/A D/A EOOTNOTE	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h)	15 1.3 HER CONS ication evel 8000 NA L = 50 NA 50	Goal 0.2 0.3 STITUENTS PHG (MCLG) NA 0.02 (100) NA	5 0.05 S OF IN DLR NA NA NA NA NA NA Maximum plicable etected c ation Lev	Image: Non-State Image: Non-State TEREST Results Results (a) 60 0.27 0.27 0.27 2.1 450 1.7 ACRC Residual Distribution Acrea Limit or average lease rel rel	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND sinfectant Leve ss than the DL	Violation? No MCL Violation? N/A N/A N/A N/A N/A N/A N/A N/A D/A EOOTNOTE	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Image: Comparison of the compa	15 1.3 IER CONS ication evel 000 NA L = 50 NA NA 50	Goal 0.2 0.3 STITUENTS PHG (MCLG) NA 0.02 (100) NA	5 0.05 S OF IN DLR NA NA NA NA NA NA Maximum plicable etected c ation Lev nelometri	TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average leaver rel c Turbidity U	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND sinfectant Leve ss than the DL	Violation? No MCL Violation? N/A N/A N/A N/A N/A N/A N/A N/A D/A EOOTNOTE	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Image: Comparison of the parameter	15 1.3 iER CONS ication evel 8000 NA L = 50 NA 50 19 19 10 10 10 10 10 10 10 10 10 10	Goal 0.2 0.3 STITUENT PHG (MCLG) NA 0.02 (100) NA NA </td <td>5 O.05 S OF IN DLR NA NA NA NA NA NA Maximum plicable etected c ation Lev nelometri Curies per constitue</td> <td>TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average leaver rel c Turbidity U er liter</td> <td>ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND sinfectant Leve ss than the DL Inits in your drinkir</td> <td>Violation? No MCL Violation? N/A N/A N/A N/A N/A N/A TOOTNOTE d Goal R</td> <td>Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for</td>	5 O.05 S OF IN DLR NA NA NA NA NA NA Maximum plicable etected c ation Lev nelometri Curies per constitue	TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average leaver rel c Turbidity U er liter	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND sinfectant Leve ss than the DL Inits in your drinkir	Violation? No MCL Violation? N/A N/A N/A N/A N/A N/A TOOTNOTE d Goal R	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Image: Comparison of the parameter	15 1.3 iter CONS ication evel 3000 NA L = 50 NA 50 19 e concentra Acids (HAA	Goal 0.2 0.3 STITUENT PHG (MCLG) NA 0.02 (100) NA NA </td <td>5 0.05 S OF IN DLR NA NA NA NA NA NA Maximum plicable etected c ation Lev nelometri Curies per constitue Residua</td> <td>TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average lear rel c Turbidity U or liter ents detected al, Lead, and</td> <td>ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND Sinfectant Leve ss than the DL Inits in your drinkir Copper which</td> <td>Violation? No MCL Violation? N/A N/A N/A N/A N/A N/A N/A B Goal R</td> <td>Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below.</td>	5 0.05 S OF IN DLR NA NA NA NA NA NA Maximum plicable etected c ation Lev nelometri Curies per constitue Residua	TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average lear rel c Turbidity U or liter ents detected al, Lead, and	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND Sinfectant Leve ss than the DL Inits in your drinkir Copper which	Violation? No MCL Violation? N/A N/A N/A N/A N/A N/A N/A B Goal R	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below.
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Copper (mg/l) (h) Motion DISTRIBUTION SYSTEM SAMPLES-OTH Notif Notif CONSTITUENTS AND (UNITS) Notif Notif Chlorate (µg/l) (c) 8 Notif Chorate (µg/l) (c) 8 Notif Chorate (µg/l) (c) 8 Notif Molybdenum (µg/l) (c) MCI Motion Molybdenum (µg/l) (c) MCI MCI Madium (µg/l) (c) MCI MCI AL = Action Level DLR = Detection Limit for Purposes of Reportin MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal mg/l = parts per million or milligrams per liter MRDL = Maximum Residual Disinfectant Level (a) The results reported in the table are average Total Trihalomethanes (TTHM), Haloacetic (b) Constituents were tested in groundwater in the stable are average	15 1.3 iter CONS ication evel 3000 NA L = 50 NA 50 19 e concentra Acids (HAA	Goal 0.2 0.3 STITUENT PHG (MCLG) NA 0.02 (100) NA NA </td <td>5 0.05 S OF IN DLR NA NA NA NA NA NA Maximum plicable etected c ation Lev nelometri Curies per constitue Residua</td> <td>TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average lear rel c Turbidity U or liter ents detected al, Lead, and</td> <td>ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND Sinfectant Leve ss than the DL Inits in your drinkir Copper which</td> <td>Violation? No MCL Violation? N/A N/A N/A N/A N/A N/A N/A B Goal R</td> <td>Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below.</td>	5 0.05 S OF IN DLR NA NA NA NA NA NA Maximum plicable etected c ation Lev nelometri Curies per constitue Residua	TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average lear rel c Turbidity U or liter ents detected al, Lead, and	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND Sinfectant Leve ss than the DL Inits in your drinkir Copper which	Violation? No MCL Violation? N/A N/A N/A N/A N/A N/A N/A B Goal R	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below.
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Copper (mg/l) (h) Image: Competition of the system of	15 1.3 IER CONS ication evel 500 NA L = 50 NA 50 10 10 10 10 10 10 10 10 10 1	Goal 0.2 0.3 PHG (MCLG) NA 0.02 (100) NA	5 0.05 S OF IN DLR NA NA NA NA NA NA Maximum plicable tetected c ation Lev nelometric Curies per constitue Residuation	TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average lea rel c Turbidity U er liter ents detected al, Lead, and tested in grou	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND Sinfectant Leve ss than the DL Inits in your drinkir Copper which	Violation? No MCL Violation? N/A N/A N/A N/A N/A N/A N/A B Goal R	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below.
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Copper (mg/l) (h) Image: Competition of the system of	15 1.3 IER CONS ication evel 300 NA L = 50 NA 50 9 9 e concentra Acids (HAA 2015 to 201 egulated cor	Goal 0.2 0.3 PHG (MCLG) NA 0.02 (100) NA IND NU NU NU NU NU INU INU INU INU INU INU INU INU	5 0.05 S OF IN DLR NA NA NA NA NA NA Maximum plicable l etected c ation Lev nelometri Curies per constitue Residua vity was t	TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average lear rel c Turbidity U er liter ents detected al, Lead, and tested in grou	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND sinfectant Level sss than the DL Inits in your drinkir Copper which undwater source	Violation? No No Violation? N/A N/A N/A N/A N/A N/A N/A ROTNOTE G Goal R	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge BHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below. D14, 2016, and 2017.
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/I) (h) Copper (mg/I) (h) Copper (mg/I) (h) DISTRIBUTION SYSTEM SAMPLES-OTH Notific CONSTITUENTS AND (UNITS) Notific Chlorate (µg/I) (c) 88 Chromium, Hexavalent (µg/I) (d) MCI Molybdenum (µg/I) (c) MCI Molybdenum (µg/I) (c) MCI Marinum Contaminant Level MCL MCL = Action Level DLR = Detection Limit for Purposes of Reportin MCL = Maximum Contaminant Level Goal mg/I = parts per million or milligrams per liter MRDL = Maximum Residual Disinfectant Level (a) The results reported in the table are average Total Trihalomethanes (TTHM), Haloacetic (b) Constituents were tested in groundwater in The most recent results are included. (c) Constituent was included as part of the unred (d) There is currently no MCL for hexavalent cher	15 1.3 IER CONS ication evel 3000 NA L = 50 NA 50 19 e concentra Acids (HAA 2015 to 201 regulated cor romium. Ti	Goal 0.2 0.3 STITUENT PHG (MCLG) NA 0.02 (100) NA ND NU NU NU NO NO NO NO NU NO NO NO NO NO NO NO NO </td <td>5 0.05 S OF IN DLR NA NA NA NA NA NA Maximum plicable elected c ation Lev nelometri Curies per constitue Residua vity was fi quiring m MCL of 7</td> <td>TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average lester real c Turbidity U er liter ents detected al, Lead, and tested in group conitoring. 10 ppb was v</td> <td>ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND sinfectant Leve sss than the DL Inits in your drinkir Copper which undwater sourd</td> <td>Violation? No No Violation? N/A N/A N/A N/A N/A N/A FOOTNOTE Goal R g water during are described zes in 2013, 20</td> <td>Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below. 2017.</td>	5 0.05 S OF IN DLR NA NA NA NA NA NA Maximum plicable elected c ation Lev nelometri Curies per constitue Residua vity was fi quiring m MCL of 7	TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average lester real c Turbidity U er liter ents detected al, Lead, and tested in group conitoring. 10 ppb was v	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND sinfectant Leve sss than the DL Inits in your drinkir Copper which undwater sourd	Violation? No No Violation? N/A N/A N/A N/A N/A N/A FOOTNOTE Goal R g water during are described zes in 2013, 20	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below. 2017.
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Copper (mg/l) (h) Copper (mg/l) (h) DISTRIBUTION SYSTEM SAMPLES-OTH Notif CONSTITUENTS AND (UNITS) Notif Chlorate (µg/l) (c) 88 Chromium, Hexavalent (µg/l) (d) MCI Chromium, Total (µg/l) (e) MCI Molybdenum (µg/l) (c) MCI Strontium (µg/l) (c) MCI AL = Action Level MCL = Maximum Contaminant Level MCL = Maximum Contaminant Level Goal mg/l = parts per million or milligrams per liter MRDL = Maximum Residual Disinfectant Level (a) The results reported in the table are average Total Trihalomethanes (TTHM), Haloacetic (b) Constituents were tested in groundwater in The most recent results are included. (c) Constituent was included as part of the unred (d) There is currently no MCL for hexavalent ch (e) Total chromium is regulated with an MC MCL or hexavalent ch	15 1.3 IER CONS ication evel 3000 NA L = 50 NA 50 99 e concentra Acids (HAA 2015 to 201 egulated cor romium. Ti CL of 50 μ	Goal 0.2 0.3 PHG (MCLG) NA 0.02 (100) NA ND NU NU NU NU NO NU NO NO NO NU NO NO NO NO NO NO NO	5 0.05 S OF IN DLR NA NA NA NA NA NA NA Maximum plicable detected c ation Lev nelometri Curies per constitue Residua vity was f quiring m MCL of f s not det	TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRO Residual Dis Limit or average lea real c Turbidity U er liter ents detected al, Lead, and tested in grou nonitoring. 10 ppb was v tected, base	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND sinfectant Leve sss than the DL Inits in your drinkir Copper which undwater sourd vithdrawn on S ad on its dete	Violation? No No Violation? N/A N/A N/A N/A N/A N/A FOOTNOTE Goal R g water during are described zes in 2013, 20	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below. 2017.
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Copper (mg/l) (h) Copper (mg/l) (h) DISTRIBUTION SYSTEM SAMPLES-OTH Notific CONSTITUENTS AND (UNITS) Notific Chlorate (µg/l) (c) 88 Chromium, Hexavalent (µg/l) (d) MCI Molybdenum (µg/l) (c) MCI Molybdenum (µg/l) (c) MCI Marinum Contaminant Level MCL MCL = Action Level Dal MCL = Maximum Contaminant Level Goal mg/l = parts per million or milligrams per liter MRDL = Maximum Residual Disinfectant Level (a) The results reported in the table are average Total Trihalomethanes (TTHM), Haloacetic (b) Constituents were tested in groundwater in The most recent results are included. (c) Constituent was included as part of the unred (d) There is currently no MCL for hexavalent ch (e) Total chromium is regulated with an MC Total chromium is regulated with an MC	15 I.3 IER CONS ication evel 3000 NA L = 50 NA 50 99 e concentra Acids (HAA 2015 to 201 egulated cor romium. Ti CL of 50 μ unregulate	Goal 0.2 0.3 PHG (MCLG) NA 0.02 (100) NA ND NU NU NU NU NU NU NU NO	5 0.05 S OF IN DLR NA NA NA NA NA NA NA NA NA Constitute elected of ation Lev- nelometri Curies per constitute Residua vity was fi quiring m MCL of s not defits requirit	TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average leave rel c Turbidity U er liter ents detected al, Lead, and tested in grou nonitoring. 10 ppb was w tected, base ng monitorin	ND .54 Range Min-Max S7 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND Sinfectant Leve ss than the DL Inits in your drinkir Copper which undwater source vithdrawn on S ed on its dete g. 9	Violation? No No Violation? N/A N/A N/A N/A N/A N/A POOTNOTE Goal R g water during are described ses in 2013, 20 eptember 11, ction limit for	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below. D14, 2016, and 2017. 2017. purposes of reporting of 10 µg/l.
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/I) (h) Copper (mg/I) (h) Copper (mg/I) (h) DISTRIBUTION SYSTEM SAMPLES-OTF Notific CONSTITUENTS AND (UNITS) Notific Chlorate (µg/I) (c) 88 Chromium, Hexavalent (µg/I) (d) MCI Chromium, Total (µg/I) (c) MCI Molybdenum (µg/I) (c) MCI Strontium (µg/I) (c) MCI MCL = Action Level MCL = Maximum Contaminant Level MCL = Maximum Contaminant Level Goal mg/I = parts per million or milligrams per liter MRDL = Maximum Residual Disinfectant Level (a) The results reported in the table are averagy. Total Trihalomethanes (TTHM), Haloacetic (b) Constituents were tested in groundwater in The most recent results are included. (c) Constituent was included as part of the unre (d) There is currently no MCL for hexavalent the (e) Total chromium is regulated with an MC Total chromium was included as part of the unre	15 1.3 ier CONS ication evel 3000 NA L = 50 NA 50 19 e concentra Acids (HAA 2015 to 201 egulated cor rromium. Ti CL of 50 µ unregulate that if preset	Goal 0.2 0.3 PHG (MCLG) NA 0.02 (100) NA ND NU	5 O.05 S OF IN DLR NA NA NA NA NA Maximum plicable etected of ation Lev- nelometri Curies per constitue Residua vity was f quiring m MCL of 2 s other por	TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average lease rel c Turbidity U er liter ents detected al, Lead, and tested in grou- nonitoring. 10 ppb was v tected, base ing monitorin potentially har	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DYMS AND sinfectant Leve ss than the DL Inits in your drinkir Copper which undwater source withdrawn on S bed on its dete g. mful organism:	Violation? No No MCL Violation? N/A N/A N/A N/A N/A N/A FOOTNOTE Goal R g water during are described tes in 2013, 20 eptember 11, ction limit for s may be pres	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below. D14, 2016, and 2017. 2017. purposes of reporting of 10 µg/l. ent. No more than 5.0% of the monthly samples may be Total
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Copper (mg/l) (h) Image: Competition of the system state state of the system state of the system state state of the system state of the system state state of the system state of the system state state state of the system state state state state of the system state state of the system state state state state state of the system state stat	15 1.3 iter CONS ication evel 3000 NA L = 50 NA 50 19 e concentra Acids (HAA 2015 to 201 egulated con romium. Ti 2L of 50 μ unregulate that if presessecutive tota	Goal 0.2 0.3 STITUENT PHG (MCLG) NA 0.02 (100) NA NU NU NU NU NU NU NU Point NU NU NU NU NU NU <	5 O.05 S OF IN DLR NA NA NA NA NA NA NA NA Maximum plicable etected of ation Lew helometri Curies per constitue Residua vity was fi quiring m MCL of f s not del ts requiri s other prositive sa	TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average lea rel c Turbidity U er liter ents detected al, Lead, and tested in grou nonitoring. 10 ppb was v tected, base ing monitorin totntially har amples, one of	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND sinfectant Leve ss than the DL inits in your drinkir Copper which undwater sourd vithdrawn on S ad on its dete g. mful organism: of which contai	Violation? No No Violation? N/A N/A N/A N/A N/A N/A TOOTNOTE d Goal R are described ces in 2013, 20 eptember 11, ction limit for s may be pres ns fecal colifo	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below. 2017. purposes of reporting of 10 µg/l. ent. No more than 5.0% of the monthly samples may be Total rms/E. Coli, constitutes an acute MCL violation.
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Copper (mg/l) (h) Image: Competition of the system state state of the system state of the system state state of the system state of the system state state of the system state of the system state state state of the system state state state state of the system state state of the system state state state state state of the system state stat	15 1.3 iter CONS ication evel 3000 NA L = 50 NA 50 19 e concentra Acids (HAA 2015 to 201 egulated con romium. Ti 2L of 50 μ unregulate that if presessecutive tota	Goal 0.2 0.3 STITUENT PHG (MCLG) NA 0.02 (100) NA NU NU NU NU NU NU NU Point NU NU NU NU NU NU <	5 O.05 S OF IN DLR NA NA NA NA NA NA NA NA Maximum plicable etected of ation Lew helometri Curies per constitue Residua vity was fi quiring m MCL of f s not del ts requiri s other prositive sa	TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average lea rel c Turbidity U er liter ents detected al, Lead, and tested in grou nonitoring. 10 ppb was v tected, base ing monitorin totntially har amples, one of	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND sinfectant Leve ss than the DL inits in your drinkir Copper which undwater sourd vithdrawn on S ad on its dete g. mful organism: of which contai	Violation? No No MCL Violation? N/A N/A N/A N/A N/A N/A FOOTNOTE d Goal R are described ces in 2013, 20 eptember 11, ction limit for s may be pres ns fecal colifo	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below. D14, 2016, and 2017. 2017. purposes of reporting of 10 µg/l. ent. No more than 5.0% of the monthly samples may be Total
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Copper (mg/l) (h) Image: Competition of the system of	15 1.3 iter CONS ication evel 3000 NA L = 50 NA 50 19 e concentra Acids (HAA 2015 to 201 egulated con romium. TI CL of 50 μ unregulate that if preses secutive tota ystem. For	Goal 0.2 0.3 STITUENT PHG (MCLG) NA 0.02 (100) NA NA NA MRDLG = M MRDLG = M NA = Not Ap ND = Not D NL = Not ific NTU = Not pic I = picot stituents re he previous g/l, but was d constituents al coliform pic TTHM, HAA	5 0.05 S OF IN DLR NA NA NA NA NA NA NA NA Maximum plicable l etected c ation Lev nelometri Curies pe constitue Residua vity was 1 quiring m MCL of - s other p ositive sa A5 and ch	TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dist Limit or average lea rel c Turbidity U er liter ents detected al, Lead, and tested in grou nonitoring. 10 ppb was v tected, base ng monitorin otentially har amples, one of horine residu	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND sinfectant Leve ss than the DL inits 'in your drinkir Copper which undwater sourd vithdrawn on S ad on its dete g. mful organism: of which contai ial, the highest	Violation? No No MCL Violation? N/A N/A N/A N/A N/A TOOTNOTE d Goal R g water during are described res in 2013, 20 eptember 11, ction limit for s may be pres ns fecal colifor quarterly runn	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below. D14, 2016, and 2017. 2017. purposes of reporting of 10 µg/l. ent. No more than 5.0% of the monthly samples may be Total rms/E. Coli, constitutes an acute MCL violation. ning annual average in 2017 is reported as "Results," while
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/I) (h) Copper (mg/I) (h) Image: Competition of the maximum and minimum of the individual DISTRIBUTION SYSTEM SAMPLES-OTH Image: Competition of the maximum and minimum of the individual Notification of the maximum of the individual Constituents and (µg/I) (c) Image: Competition of the maximum contaminant Level Notification of the maximum contaminant Level AL = Action Level DLR = Detection Limit for Purposes of Reportin MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level MCLG = Maximum Contaminant Level MCLG = Maximum Contaminant Level MCLG = Maximum Contaminant Level MCLG = Maximum Contaminant Level MCLG = Maximum Contaminant Level MCLG = Maximum Contaminant Level MCLG = Maximum Contaminant Level MCLG = Maximum Residual Disinfectant Level (a) The results reported in the table are average Total Trihalomethanes (TTHM), Haloacetic (b) Constituents were tested in groundwater in The most recent results are included. (c) Constituent was included as part of the unree (d) There is currently no MCL for hexavalent ch (e) Total chromium was included as part of the unree (f) Coliforms are bacteria used as an indicator (f) Coliforms are bacteria used as an indicator (f) Coliforms are bacteria used as an indicator	15 1.3 iter CONS ication evel 3000 NA L = 50 NA 50 19 19 10 10 10 10 10 10 10 10 10 10	Goal 0.2 0.3 PHG (MCLG) NA 0.02 (100) NA Intro of the NS), Chlorine I7; radioacti Instituents re he previous g/l, but was al coliform p TTHM, HAA e reported a	5 0.05 S OF IN DLR NA NA NA NA NA NA NA Maximum plicable letected co ation Lev nelometric Curies per constitues Residua vity was fi as not det is not det is requiring m MCL of as a sother propositive sa As and ch	TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis Limit or average les rel c Turbidity U er liter ents detected al, Lead, and tested in grou nonitoring. 10 pp was w tected, bass ing monitorin otentially har amples, one of horine residu s." The MCL	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND Sinfectant Leve ss than the DL inits in your drinkir Copper which undwater source vithdrawn on S ed on its dete g. mful organism: of which contai ial, the highest for color, odor,	Violation? No No Violation? N/A N/A N/A N/A N/A N/A N/A N/A COTNOTE of Goal R g water during are described ces in 2013, 20 eptember 11, ction limit for s may be pres ns fecal colifor quarterly runr and turbidity i	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below. D14, 2016, and 2017. 2017. purposes of reporting of 10 µg/l. ent. No more than 5.0% of the monthly samples may be Total rms/E. Coli, constitutes an acute MCL violation. ning annual average in 2017 is reported as "Results," while
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/I) (h) Copper (mg/I) (h) Image: Copper (mg/I)	15 1.3 IER CONS ication evel 300 NA L = 50 NA 50 9 9 9 9 9 9 9 9 9 9 9 9 9	Goal 0.2 0.3 STITUENT PHG (MCLG) NA 0.02 (100) NA NA NA MRDLG = M NA = No Ap ND = Not Dr NL = Notific NTU = Nepl pCi/l = pico(Ations of the to, chlorine 17; radioactir instituents re he previous g/l, but was d constituent ent, indicates al coliform pu TTHM, HAA e reported a ticces in the w regulatory A	5 0.05 S OF IN DLR NA NA NA NA NA NA NA Maximum plicable l etected c ation Lev nelometri Curies per constitue Residua vity was f a s not def ts requiring m MCL of a s not def ts requiring s other po positive sa A5 and ch s "Range atter syst action Lev	TEREST Results (a) 60 0.27 0.27 2.1 450 1.7 ACRO Residual Dis Limit or average lea rel c Turbidity U er liter ents detected al, Lead, and tested in grou nonitoring. 10 ppb was v tected, base ing monitorin botentially har moples, one of horine residu c. The MCL is tem. The 90th vel. Copper v	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND infectant Leve ss than the DL inits in your drinkir Copper which undwater source vithdrawn on S ad on its dete g, mful organism: of which contai ial, the highest for color, odor, h percentile co vas detected a	Violation? No No Violation? N/A N/A N/A N/A N/A N/A N/A COTNOTE of Goal R eptember 11, ction limit for s may be pres ns fecal colifo quarterly runr and turbidity i ncentration is bove the DLR	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits Naturally occuring; industrial waste discharge S PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR
AT-THE-TAP LEAD AND COPPER Actio Lead (µg/l) (h) Copper (mg/l) (h) Image: Copper (mg/l)	15 1.3 ier CONS ication evel 3000 NA L = 50 NA 50 19 10 10 10 10 10 10 10 10 10 10	Goal 0.2 0.3 STITUENT PHG (MCLG) NA 0.02 (100) NA ND Itions of the NA Itions of the	5 0.05 S OF IN DLR NA NA NA NA NA NA Maximum plicable etected of ation Lev- nelometri Curies per constitue Residua vity was f quiring m MCL of 2 s other per solution Lev- solution S s other per solution S S and del s "Range vater syste constitue S S and che s "Range vater syste conton Lev- mber 20	Terest Results (a) 60 0.27 0.27 2.1 450 1.7 ACRC Residual Dis- Limit or average les- rel c Turbidity U er liter ents detected a, Lead, and tested in grou- nonitoring. 10 ppb was v tected, base ing monitorin otentially har imples, one of horine residual ." The MCL i " " " The MCL i " " " " " " " " " " " " " " " " " " "	ND .54 Range Min-Max 57 - 62 0.25 - 0.29 0.25 - 0.28 2 - 2.2 440 - 460 1.6 - 1.7 DNYMS AND sinfectant Leve ss than the DL Inits in your drinkir Copper which undwater source withdrawn on S ed on its dete g. mful organisms of which contai ala, the highest for color, odor, h percentile co vas detected a centrations rep	Violation? No No MCL Violation? N/A N/A N/A N/A N/A N/A FOOTNOTE d Goal R g water during are described dcss in 2013, 20 eptember 11, ction limit for s may be press ns fecal colifor quarterly runr and turbidity i nocentration is bove the DLR orted may not	Corrosion of household plumbing Corrosion of household plumbing Typical Source of Contaminant Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Erosion/leaching from natural deposits Erosion/leaching from natural deposits PHG = Public Health Goal µg/l = parts per billion or micrograms per liter µmho/cm = micromhos per centimeter "<" = constituent was detected but average of test results is less than the DLR N/A = Not Applicable g 2017 or from the most recent tests, except for below. D14, 2016, and 2017. 2017. purposes of reporting of 10 µg/l. ent. No more than 5.0% of the monthly samples may be Total rms/E. Coli, constitutes an acute MCL violation. ning annual average in 2017 is reported as "Results," while s a secondary standard. reported in the table. Lead was detected in three samples

CITY OF GLENDORA 2017 DRINKING WATER QUALITY