Foothill Municipal Water District(FMWD) 2024 WATER QUALITY REPORT TO FMWD MEMBER AGENCIES WEYMOUTH refers to the Metropolitan Water District's Weymouth Water Treatment Plant in the city of La Verne. FM-1 refers to the FMWD-Metropolitan Water District connection in the city of Pasadena. | FM-1 refers to the FMWD-Metropolitan V | | - | | | | | | |--|-----------------|--|-------------------|---------------------------|------------|-------------------|--| | | | WEYMOUTH
EFFLUENT | FM-1 | REGULA | ATORY STA | NDARDS | | | | | Range/Average | | State
(Federal)
MCL | PHG | State DLR
(RL) | Major Sources in Drinking Water | | SOURCE WATER | | | | | | | | | % of State Project Water
% of Groundwater | | 0-100/68 | | NA | NA | NA | | | PRIMARY STANDARDS - Man | datory Health- | Related Standards | | | | | | | CLARITY | | | | | | | | | Combined Filter Effluent (CFE) Turbidity (a) | NTU
% ≤ 0.3 | 0.06 (highest)
100% | NA | TT | NA | NA | Soil runoff | | MICROBIOLOGICAL (b) | | • | | | • | • | | | Total Coliform Bacteria (c) | % Positive | 0-0.3/0.07%
distribution system-wide | 0.003% | 5.0 | MCLG = 0 | NA | Naturally present in the environment | | Escherichia coli (E. coli) (c,d) | Number | 0% distribution system-wide | 0.003% | 1 | MCLG = 0 | NA | Human and animal fecal waste | | Heterotrophic Plate Count (e) | CFU/ mL | ND-1/ND | ND | TT | NA | (1) | Naturally present in the environment | | Cryptosporidium | Oocyst
200 L | ND | ND | TT | MCLG = 0 | (1) | Human and animal fecal waste | | Giardia | Cysts
200 L | ND | ND | TT | MCLG = 0 | (1) | Human and animal fecal waste | | INORGANIC CHEMICALS | | | | | • | • | | | Nitrite (as Nitrogen) | ppm | ND | ND | 1 | 1 | 0.4 | Runoff & leaching from fertilizer use; septic tank and sewage; erosion of natural deposits | | | | | | | | | | | DISINFECTION BY-PRODUCTS, D | DISINFECTANT R | ESIDUALS, AND DISI | NFECTION BY-PRODU | JCTS PRECU | JRSORS (m) | | | | Total Trihalomethanes (TTHM) | ppb | 18-34/16-74 Distribution system-wide (i) | 27-30 | 80 | NA | 1 | By-product of drinking water disinfection | | Sum of Five Haloacetic Acids (HAA5) | ppb | ND-8.9/6.2 Distribution system-wide (i) | 5.4-6.8 | 60 | NA | 1 | By-product of drinking water disinfection | | Total Chlorine Residual | ppm | 1.2-3.0/2.5 highest RAA Distribution system-wide | 2.0-2.7 | [4.0] | [4.0] | NA | Drinking water disinfectant added for treatment | ### **DEFINITION OF TERMS AND FOOTNOTES** - (a) FMWD recieves 100% of water from the Metropolitan Water District of Southern California's Weymouth Treatment Plant. - (b) Per the State's Surface Water Treatment Rule, treatment techniques that remove or inactivate Giardia cysts will also remove HPC bacteria, Legionella, and viruses. Legionella and virus monitoring is not required. - (c) Compliance is based on monthly samples from treatment plant effluents and the distribution system. - (d) The MCL for *E. coli* is based on any of the following conditions: Coliform-positive routine and repeat samples with either of them positive for *E. coli*; failure to analyze a repeat sample following an *E. coli*-positive routine sample; or a coliform-positive repeat sample is not tested for the presence of *E. coli*. - (e) All distribution system samples had detectable total chlorine residuals, so no HPC analysis was required. Metropolitan monitors HPC bacteria to ensure treatment process efficacy. - (m) Compliance with the State and Federal MCLs is based on RAA or LRAA, as appropriate. Plant core locations for TTHM and HAA5 are service connections specific to each of the treatment plant effluents. | | | | | | Linacinto a | | | ent Plant Effli | | , | | | |--|------------------------------|-----------|----------|--------------------------|------------------------|-----------------|-----------------|-----------------|------------------|-------------------|------------------------|--| | Parameter | Units | State MCL | PHG | State DLR/
CCRDL (RL) | Range
Average | Diemer
Plant | Jensen
Plant | Mills
Plant | Skinner
Plant | Weymouth
Plant | Distribution
System | Major Sources in Drinking Water | | Percent State Water Project | % | NA | NA | NA | Range | 0 - 98 | 100 | 100 | 0 - 64 | 0 - 100 | | Not applicable | | PRIMARY STANDARDS—Mandatory Health- | Related Stan | dards | | | | | | | | | | | | CLARITY | | | | | | | | | | | | | | Combined Filter Effluent (CFE) Turbidity (a) | NTU
% | TT | NA | NA | Highest
% ≤ 0.3 NTU | 0.06
100 | 0.04
100 | 0.08
100 | 0.07
100 | 0.06
100 | | Soil runoff | | MICROBIOLOGICAL (b) | | | | | | | | | | | | | | Total Coliform Bacteria (c) | % Positive
Monthly Sample | TT | MCLG = 0 | NA | Range
Average | | | | | | 0 - 0.3
0.1 | Naturally present in the environment | | Heterotrophic Plate Count (HPC) Bacteria (d) | CFU/mL | TT | NA | NA | Range
Median | ND | ND | ND | ND | ND | | Naturally present in the environment | | Cryptosporidium | oocysts/200 L | TT | MCLG = 0 | NA | Range
Average | ND | ND | ND | ND | ND | | Human and animal fecal waste | | Giardia | cysts/200 L | TT | MCLG = 0 | NA | Range
Average | ND | ND | ND | ND | ND | | Human and animal fecal waste | | ORGANIC CHEMICALS | | | | | | | | | | | | | | Synthetic Organic Compounds (e) | | 1 | | | | | 1 | 1 | | | 1 | | | 1,2,3-Trichloropropane (1,2,3-TCP) | ppt | 5 | 0.7 | 5 | Range
Average | ND | ND | ND | ND | ND | | Discharge from industrial and agrichemical factories; byproduct of producing other compounds and pesticides; leaching from | | 2,4,5-TP (Silvex) | ppb | 50 | 3 | 1 | Range
Average | ND | ND | ND | ND | ND | | hazardous waste sites Residue of banned herbicide | | 2,4-D | ppb | 70 | 20 | 10 | Range
Average | ND | ND | ND | ND | ND | | Runoff from herbicide used on row crops, rangeland, lawns, and aquatic weeds | | Acrylamide (f) | ppm | TT | MCLG = 0 | NA | Range
Average | NA | NA | NA | NA | NA | | Water treatment chemical impurities | | Alachlor | ppb | 2 | 4 | 1 | Range
Average | ND | ND | ND | ND | ND | | Runoff from herbicide used on row crops | | Atrazine | ppb | 1 | 0.15 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Runoff from herbicide used on row crops and along railroad and highway right-of-ways | | Bentazon | ppb | 18 | 200 | 2 | Range
Average | ND | ND | ND | ND | ND | | Runoff/leaching from herbicide used on beans, peppers, corn, peanuts, rice, and ornamental grasses | | Benzo(a)pyrene | ppt | 200 | 7 | 100 | Range
Average | ND | ND | ND | ND | ND | | Leaching from linings and coatings of water storage tanks and distribution mains | | Carbofuran | ppb | 18 | 0.7 | 5 | Range
Average | ND | ND | ND | ND | ND | | Leaching of soil fumigant used on rice, alfalfa, and grape vineyards | | Chlordane | ppt | 100 | 30 | 100 | Range
Average | ND | ND | ND | ND | ND | | Residue of banned insecticide | | Dalapon | ppb | 200 | 790 | 10 | Range
Average | ND | ND | ND | ND | ND | | Runoff from herbicide used on right-of-ways, and crops and landscape maintenance | | Di(2-ethylhexyl)adipate | ppb | 400 | 200 | 5 | Range
Average | ND | ND | ND | ND | ND | | Discharge from chemical factories | | Di(2-ethylhexyl)phthalate | ppb | 4 | 12 | 3 | Range
Average | ND | ND | ND | ND | ND | | Discharge from rubber and chemical factory; inert ingredient in pesticides | | Dibromochloropropane (DBCP) | ppt | 200 | 3 | 10 | Range
Average | ND | ND | ND | ND | ND | | Banned nematocide that may still be present in soils due to runoff/leaching | | Dinoseb | ppb | 7 | 14 | 2 | Range
Average | ND | ND | ND | ND | ND | | Runoff from herbicide used on soybeans, vegetables, and fruits | | Dioxin (2,3,7,8-TCDD) | ppq | 30 | 0.05 | 5 | Range
Average | ND | ND | ND | ND | ND | | Waste incineration emissions; chemical factory discharge | | Diquat | ppb | 20 | 6 | 4 | Range
Average | ND | ND | ND | ND | ND | | Runoff from herbicide used for terrestrial and aquatic weeds | | Endothall | ppb | 100 | 94 | 45 | Range
Average | ND | ND | ND | ND | ND | | Runoff from herbicide used for terrestrial and aquatic weeds; defoliant | | Endrin | ppb | 2 | 0.3 | 0.1 | Range
Average | ND | ND | ND | ND | ND | | Residue of banned insecticide and rodenticide | | Epichlorohydrin (f) | ppm | TT | MCLG = 0 | NA | Range
Average | NA | NA | NA | NA | NA | | Water treatment chemical impurities | | | | | | | | | Treatm | ent Plant Efflu | | , | | | |---|-------|-----------|-------|--------------------------|------------------|-----------------|-----------------|-----------------|------------------|-------------------|------------------------|--| | Parameter | Units | State MCL | PHG | State DLR/
CCRDL (RL) | Range
Average | Diemer
Plant | Jensen
Plant | Mills
Plant | Skinner
Plant | Weymouth
Plant | Distribution
System | Major Sources in Drinking Water | | Ethylene Dibromide (EDB) | ppt | 50 | 10 | 20 | Range
Average | ND | ND | ND | ND | ND | | Petroleum refinery discharges; underground gas tank leaks;
banned nematocide that may still be present in soils due to runoff
and leaching | | Glyphosate | ppb | 700 | 900 | 25 | Range
Average | ND | ND | ND | ND | ND | | Runoff from herbicide use | | Heptachlor | ppt | 10 | 8 | 10 | Range
Average | ND | ND | ND | ND | ND | | Residue of banned insecticide | | Heptachlor Epoxide | ppt | 10 | 6 | 10 | Range
Average | ND | ND | ND | ND | ND | | Breakdown product of
heptachlor | | Hexachlorobenzene | ppb | 1 | 0.03 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Discharge from metal refineries and agrichemicals factories; wastewater chlorination reaction byproduct | | Hexachlorocyclopentadiene | ppb | 50 | 2 | 1 | Range
Average | ND | ND | ND | ND | ND | | Discharge from chemical factories | | Lindane | ppt | 200 | 32 | 200 | Range
Average | ND | ND | ND | ND | ND | | Runoff/leaching from insecticide used on cattle, lumber, and gardens | | Methoxychlor | ppb | 30 | 0.09 | 10 | Range
Average | ND | ND | ND | ND | ND | | Runoff/leaching from insecticide uses on fruits, vegetables, alfalfa, and livestock | | Molinate (Ordram) | ppb | 20 | 1 | 2 | Range
Average | ND | ND | ND | ND | ND | | Runoff/leaching from herbicide used on rice | | Oxamyl (Vydate) | ppb | 50 | 26 | 20 | Range
Average | ND | ND | ND | ND | ND | | Runoff/leaching from insecticide uses | | Pentachlorophenol | ppb | 1 | 0.3 | 0.2 | Range
Average | ND | ND | ND | ND | ND | | Discharge from wood preserving factories, and other insecticidal and herbicidal uses | | Picloram | ppb | 500 | 166 | 1 | Range
Average | ND | ND | ND | ND | ND | | Herbicide runoff | | Polychlorinated Biphenyls (PCBs) | ppt | 500 | 90 | 500 | Range
Average | ND | ND | ND | ND | ND | | Runoff from landfills; discharge of waste chemicals | | Simazine | ppb | 4 | 4 | 1 | Range
Average | ND | ND | ND | ND | ND | | Herbicide runoff | | Thiobencarb | ppb | 70 | 42 | 1 | Range
Average | ND | ND | ND | ND | ND | | Runoff/leaching from herbicide used on rice | | Toxaphene | ppb | 3 | 0.03 | 1 | Range
Average | ND | ND | ND | ND | ND | | Runoff/leaching from insecticide used on cotton and cattle | | Volatile Organic Compounds | | | | | Ĭ | | | | | | | | | 1,1,1-Trichloroethane | ppb | 200 | 1,000 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Metal degreasing site discharge; manufacture of food wrappings | | 1,1,2,2-Tetrachloroethane | ppb | 1 | 0.1 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Discharge from industrial and agrichemical factories; solvent used in production of TCE, pesticides, varnish, and lacquers | | 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113) | ppm | 1.2 | 4 | 0.01 | Range
Average | ND | ND | ND | ND | ND | | Discharge from metal degreasing sites and other factories; dry cleaning solvent; refrigerant | | 1,1,2-Trichloroethane | ppb | 5 | 0.3 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Discharge from industrial chemical factories | | 1,1-Dichloroethane | ppb | 5 | 3 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Extraction and degreasing solvent; fumigant | | 1,1-Dichloroethylene | ppb | 6 | 10 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Discharge from industrial chemical factories | | 1,2,4-Trichlorobenzene | ppb | 5 | 5 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Discharge from textile-finishing factories | | 1,2-Dichlorobenzene | ppb | 600 | 600 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Discharge from industrial chemical factories | | 1,2-Dichloroethane | ppt | 500 | 400 | 500 | Range
Average | ND | ND | ND | ND | ND | | Discharge from industrial chemical factories | | 1,2-Dichloropropane | ppb | 5 | 0.5 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Industrial chemical factory discharge; primary component of some fumigants | | 1,3-Dichloropropene | ppt | 500 | 200 | 500 | Range
Average | ND | ND | ND | ND | ND | | Runoff/leaching from nematocide used on croplands | | 1,4-Dichlorobenzene | ppb | 5 | 6 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Discharge from industrial chemical factories | | Benzene | ppb | 1 | 0.15 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Plastics factory discharge; gas tanks and landfill leaching | | | | | | | | | | ent Plant Efflu | | | | | |--------------------------------------|-------|-----------|------------|--------------------------|-------------------------|------------------|------------------|-----------------|------------------|-------------------|------------------------|---| | Parameter | Units | State MCL | PHG | State DLR/
CCRDL (RL) | Range
Average | Diemer
Plant | Jensen
Plant | Mills
Plant | Skinner
Plant | Weymouth
Plant | Distribution
System | Major Sources in Drinking Water | | Carbon Tetrachloride | ppt | 500 | 100 | 500 | Range
Average | ND | ND | ND | ND | ND | | Discharge from chemical plants and other industrial waste | | cis-1,2-Dichloroethylene | ppb | 6 | 13 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Industrial chemical factory discharge; byproduct of TCE and PCE biodegradation | | Dichloromethane (Methylene Chloride) | ppb | 5 | 4 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Discharge from pharmaceutical and chemical factories; insecticide | | Ethylbenzene | ppb | 300 | 300 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Petroleum refinery discharge; industrial chemical factories | | Methyl-tert-butyl ether (MTBE) | ppb | 13 | 13 | 3 | Range
Average | ND | ND | ND | ND | ND | | Gasoline discharge from watercraft engines | | Monochlorobenzene | ppb | 70 | 70 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Discharge from industrial and agrichemical factories, and dry cleaners | | Styrene | ppb | 100 | 0.5 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Rubber and plastics factories discharge; landfill leaching | | Tetrachloroethylene (PCE) | ppb | 5 | 0.06 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Discharge from factories, dry cleaners, and auto shops | | Toluene | ppb | 150 | 150 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Discharge from petroleum and chemical refineries | | trans -1,2-Dichloroethylene | ppb | 10 | 50 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Industrial chemical factory discharge; byproduct of TCE and PCE biodegradation | | Trichloroethylene (TCE) | ppb | 5 | 1.7 | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Discharge from metal degreasing sites and other factories | | Trichlorofluoromethane (Freon-11) | ppb | 150 | 1,300 | 5 | Range
Average | ND | ND | ND | ND | ND | | Industrial factory discharge; degreasing solvent; propellant and refrigerant | | Vinyl Chloride | ppt | 500 | 50 | 500 | Range
Average | ND | ND | ND | ND | ND | | Leaching from PVC piping; plastic factory discharge; byproduct of TCE and PCE biodegradation | | Xylenes, Total | ppm | 1.750 | 1.8 | 0.0005 | Range
Average | ND | ND | ND | ND | ND | | Discharge from petroleum and chemical refineries; fuel solvent | | INORGANIC CHEMICALS | | | | | | | | | | | | | | Aluminum (g) | ppb | 1,000 | 600 | 50 | Range
Highest RAA | ND - 110
ND | 52 - 91
62 | ND - 110
ND | ND - 160
74 | ND - 150
93 | | Residue from water treatment process; erosion of natural deposits | | Antimony | ppb | 6 | 1 | 6 | Range
Average | ND | ND | ND | ND | ND | | Petroleum refinery discharges; fire retardants; solder; electronics | | Arsenic | ppb | 10 | 0.004 | 2 | Range
Average | ND | ND | ND | ND | ND | | Natural deposits erosion, glass and electronics production wastes | | Asbestos (h) | MFL | 7 | 7 | 0.2 | Range
Average | ND | ND | ND | ND | ND | | Asbestos cement pipes internal corrosion; runoff and leaching from natural deposits | | Barium | ppb | 1,000 | 2,000 | 100 | Range
Average | 124 | ND | ND | ND | 124 | | Oil and metal refineries discharge; natural deposits erosion | | Beryllium | ppb | 4 | 1 | 1 | Range
Average | ND | ND | ND | ND | ND | | Discharge from metal refineries, aerospace, and defense industries | | Cadmium | ppb | 5 | 0.04 | 1 | Range
Average | ND | ND | ND | ND | ND | | Internal corrosion of galvanized pipes; discharge from electroplating, industrial factories, and metal refineries; runoff from waste batteries and paints; natural deposits erosion | | Chromium | ppb | 50 | MCLG = 100 | 10 | Range
Average | ND | ND | ND | ND | ND | | Discharge from steel and pulp mills; natural deposits erosion | | Chromium VI | ppb | 10 | 0.02 | 0.1 | Range
Average | ND | ND | ND | ND | ND | | Runoff/leaching from natural deposits; discharge from industrial wastes | | Copper (i) | ppm | AL = 1.3 | 0.3 | 0.05 | Range
Average | ND | ND | ND | ND | ND | | Internal corrosion of household pipes; runoff/leaching from natural deposits; wood preservatives leaching | | Cyanide | ppb | 150 | 150 | 100 | Range
Average | ND | ND | ND | ND | ND | | Discharge from steel/metal, plastic, and fertilizer factories | | Fluoride (j) | ppm | 2.0 | 1 | 0.1 | Range | 0.6 - 0.8
0.7 | 0.6 - 0.8
0.7 | 0.6 - 0.9 | 0.6 - 0.8 | 0.3 - 0.8 | 0.3 - 0.8 | Runoff and leaching from natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum | | Lead (i) | ppb | AL = 15 | 0.2 | 5 | Average Range Average | ND | ND | ND | ND | ND | 0.7 | factories Internal corrosion of household water plumbing systems; industrial manufacturers' discharge; runoff and leaching from natural deposits | | | | 2 | 1.2 | 1 | Range | ND | ND | ND | ND | ND | | Erosion of natural deposits; factory discharge; landfill runoff | | | | | | | | | Treatm | ent Plant Efflu | | | | | |--|-------------|------------|------------------|--------------------------|-----------------------|------------------|------------------|------------------|------------------|-------------------|------------------------|---| | Parameter | Units | State MCL | PHG | State DLR/
CCRDL (RL) | Range
Average | Diemer
Plant | Jensen
Plant | Mills
Plant | Skinner
Plant | Weymouth
Plant
| Distribution
System | Major Sources in Drinking Water | | Nickel | ppb | 100 | 12 | 10 | Range
Average | ND | ND | ND | ND | ND | | Erosion of natural deposits; discharge from metal factories | | Nitrate (as Nitrogen) | ppm | 10 | 10 | 0.4 | Range
Average | ND | 0.5 | 0.6 | ND | ND | | Runoff and leaching from fertilizer use; septic tank and sewage; natural deposits erosion | | Nitrite (as Nitrogen) | ppm | 1 | 1 | 0.4 | Range
Average | ND | ND | ND | ND | ND | | Runoff and leaching from fertilizer use; septic tank and sewage; natural deposits erosion | | Perchlorate | ppb | 6 | 1 | 1 | Range
Average | ND | ND | ND | ND | ND | | Naturally-occurring in arid regions; industrial waste discharge | | Selenium | ppb | 50 | 30 | 5 | Range
Average | ND | ND | ND | ND | ND | | Refineries, mines, and chemical waste discharge; runoff from livestock lots | | Thallium | ppb | 2 | 0.1 | 1 | Range
Average | ND | ND | ND | ND | ND | | Leaching from ore processing; discharge from electronics, glass, and pharmaceutical factories | | RADIOLOGICALS (k) | | | | | | | | | | | | | | Gross Alpha Particle Activity | pCi/L | 15 | MCLG = 0 | 3 | Range
Average | ND - 5
ND | ND | ND | ND - 4
ND | ND | | Runoff/leaching from natural deposits | | Gross Beta Particle Activity | pCi/L | 50 | MCLG = 0 | 4 | Range
Average | ND - 5
4 | ND | ND | ND - 5
4 | ND - 5
ND | | Decay of natural and man-made deposits | | Radium-226 | pCi/L | NA | 0.05 | 1 | Range
Average | ND | ND | ND | ND | ND | | | | Radium-228 | pCi/L | NA | 0.019 | 1 | Range
Average | ND | ND | ND - 1
ND | ND | ND | | Erosion of natural deposits | | Combined Radium-226 + 228 | pCi/L | 5 | MCLG = 0 | NA | Range
Average | ND | ND | ND - 1
ND | ND | ND | | | | Strontium-90 | pCi/L | 8 | 0.35 | 2 | Range
Average | ND | ND | ND | ND | ND | | Decay of natural and man-made deposits | | Tritium | pCi/L | 20,000 | 400 | 1,000 | Range
Average | ND | ND | ND | ND | ND | | Decay of natural and man-made deposits | | Uranium | pCi/L | 20 | 0.43 | 1 | Range
Average | ND - 3
1 | 2 - 3
2 | ND | ND - 3
2 | ND - 3
ND | | Erosion of natural deposits | | DISINFECTION BYPRODUCTS, DISINFECTANT R | ESIDUALS, A | AND DISINF | ECTION BY | PRODUCT P | RECURSORS (| [1) | | | | | | | | Total Trihalomethanes (TTHM) (Plant Core
Locations and Distribution System) | ppb | 80 | NA | 1.0 | Range
Highest LRAA | 24 - 30
44 | 13 - 27
21 | 14 - 29
44 | 15 - 48
34 | 28 - 37
32 | 12 - 48
45 | Duranducto of dripking under ablasination | | Sum of Five Haloacetic Acids (HAA5) (Plant Core Locations and Distribution System) | ppb | 60 | NA | 1.0 | Range
Highest LRAA | ND - 9.5
19 | 1.3 - 5
5.6 | ND - 5.7
13 | 1.2 - 23
12 | ND - 4.2
6.2 | ND - 23
19 | Byproducts of drinking water chlorination | | Chloramines (as total chlorine residual) | ppm | MRDL = 4.0 | MRDLG = 4 | NA | Range
Highest RAA | | | | | | 1.6 - 3.0
2.5 | Drinking water disinfectant added for treatment | | Bromate | ppb | 10 | 0.1 | 1.0 | Range
Highest RAA | ND - 1.6
ND | ND - 5.4
3.1 | ND - 19
7.9 | ND - 6.0
1.5 | ND - 9.2
2.0 | | Byproduct of drinking water ozonation | | Total Organic Carbon (TOC) | ppm | TT | NA | 0.30 | Range
Highest RAA | 2.0 - 2.5
2.4 | 2.0 - 2.5
2.4 | 1.5 - 2.5
2.2 | 2.3 - 3.0
2.6 | 2.1 - 2.6
2.4 | | Various natural and man-made sources; TOC is a precursor for the formation of disinfection byproducts | | SECONDARY STANDARDS—Aesthetic Stand | lards | | | | | | | | | | | | | Aluminum (g) | ppb | 200 | 600 | 50 | Range
Highest RAA | ND - 110
ND | 52 - 91
62 | ND - 110
ND | ND - 160
74 | ND - 150
93 | | Residue from water treatment process; runoff and leaching from natural deposits | | Chloride | ppm | 500 | NA | (2) | Range
Average | 93 - 116
104 | 39 - 41
40 | 41 - 67
54 | 92 - 100
96 | 96 - 116
106 | | Runoff/leaching from natural deposits; seawater influence | | Color | Color Units | 15 | NA | (1) | Range
Average | 1 - 2
2 | 1 | 1 - 2 | 1 - 2 | - 1 | | Naturally-occurring organic materials | | Copper (i) | ppm | 1.0 | 0.3 | 0.05 | Range
Average | ND | ND | ND | ND | ND | | Internal corrosion of household pipes; runoff/leaching from natural deposits; wood preservatives leaching | | Foaming Agents - Methylene Blue Active
Substances (MBAS) | ppb | 500 | NA | (50) | Range
Average | ND | ND | ND | ND | ND | | Municipal and industrial waste discharges | | Iron | ppb | 300 | NA | 100 | Range
Average | ND | ND | ND | ND | ND | | Leaching from natural deposits; industrial wastes | | Manganese | ppb | 50 | NL = 500 | (5) | Range
Average | ND | ND | ND | ND | ND | | Leaching from natural deposits | | Methyl-tert-butyl ether (MTBE) | ppb | 5 | 13 | 3 | Range
Average | ND | ND | ND | ND | ND | | Gasoline discharge from watercraft engines | | Odor Threshold | TON | 3 | NA | 1 | Range
Average | 1 | 1 | 1 | 1 | ND | | Naturally-occurring organic materials | | | | | | | | | Treatm | ent Plant Efflu | | | | | |--|-------|------------|-----|--------------------------|------------------|--------------------|------------------|------------------|------------------|--------------------|------------------------|---| | Parameter | Units | State MCL | PHG | State DLR/
CCRDL (RL) | Range
Average | Diemer
Plant | Jensen
Plant | Mills
Plant | Skinner
Plant | Weymouth
Plant | Distribution
System | Major Sources in Drinking Water | | Silver | ppb | 100 | NA | 10 | Range
Average | ND | ND | ND | ND | ND | | Industrial discharges | | Specific Conductance | μS/cm | 1,600 | NA | NA | Range
Average | 888 - 1,070
979 | 498 - 522
510 | 317 - 466
392 | 903 - 917
910 | 912 - 1,080
996 | | Substances that form ions in water; seawater influence | | Sulfate | ppm | 500 | NA | 0.5 | Range
Average | 196 - 253
224 | 89 - 92
90 | 21 - 47
34 | 195 - 203
199 | 200 - 250
225 | | Runoff/leaching from natural deposits; industrial wastes | | Thiobencarb | ppb | 1 | 42 | 1 | Range
Average | ND | ND | ND | ND | ND | | Runoff/leaching from rice herbicide | | Total Dissolved Solids, Filterable (TDS) (m) | ppm | 1,000 | NA | (2) | Range
Average | 556 - 686
621 | 291 - 322
306 | 178 - 263
220 | 560 - 572
566 | 573 - 690
632 | | Runoff/leaching from natural deposits | | Turbidity | NTU | 5 | NA | 0.1 | Range
Average | ND | ND | ND | ND | ND | | Soil runoff | | Zinc | ppm | 5.0 | NA | 0.05 | Range
Average | ND | ND | ND | ND | ND | | Runoff/leaching from natural deposits; industrial wastes | | OTHER PARAMETERS | | | | | | | | | | | | | | General Minerals | | T | | T | | 105 100 | 04 404 | 00 74 | 100 107 | 100 107 | 1 | Dura # II a shi | | Alkalinity, Total (as CaCO₃) | ppm | NA | NA | (1) | Range
Average | 105 - 123
114 | 94 - 101
98 | 68 - 71
70 | 103 - 107
105 | 109 - 127
118 | | Runoff/leaching of natural deposits; carbonate, bicarbonate, hydroxide, and occasionally borate, silicate, and phosphate | | Calcium | ppm | NA | NA | (0.1) | Range
Average | 58 - 78
68 | 38 - 39
38 | 15 - 22
18 | 61 - 62
62 | 59 - 76
68 | | Runoff/leaching from natural deposits | | Hardness, Total (as CaCO ₃) | ppm | NA | NA | (1) | Range | 235 - 305 | 143 - 153 | 68 - 99 | 242 - 243 | 241 - 303 | | Runoff/leaching from natural deposits; sum of polyvalent cations, | | | | | | | Average
Range | 270
22 - 29 | 148
13 - 14 | 84
8.4 - 11 | 242
22 - 23 | 272
23 - 29 | | generally magnesium and calcium present in the water | | Magnesium | ppm | NA | NA | (0.01) | Average | 26 | 14 | 9.7 | 22 | 26 | | Runoff/leaching from natural deposits | | Potassium | ppm | NA | NA | (0.2) | Range
Average | 4.4 - 5.4
4.9 | 2.6 | 1.9 - 3.1
2.5 | 4.6 - 4.9
4.8 | 4.6 - 5.4
5.0 | | Salt present in the
water; naturally-occurring | | Sodium | ppm | NA | NA | (1) | Range
Average | 90 - 116
103 | 46 | 35 - 54
44 | 91 - 95
93 | 93 - 117
105 | | Can present in the water, naturally-occurring | | Unregulated Contaminants | | | | | <u></u> | | | | | | | | | Boron | ppb | NL = 1,000 | NA | 100 | Range
Average | 140 | 170 | 130 | 130 | 140 | | Runoff/leaching from natural deposits; industrial wastes | | Chlorate | ppb | NL = 800 | NA | (10) | Range
Average | 77 | 71 | 78 | 80 | 80 | | Byproduct of drinking water chlorination; industrial processes | | Lithium | ppb | NA | NA | (10) | Range
Average | 32 - 47
40 | ND | ND | 24 - 32
28 | 32 - 47
40 | | Naturally-occurring; used in electrochemical cells, batteries, and organic syntheses and pharmaceuticals | | Vanadium | ppb | NL = 50 | NA | 3 | Range
Average | ND | ND | ND | ND | ND | | Naturally-occurring; industrial waste discharge | | Dichlorodifluoromethane (Freon-12) | ppb | NL = 1,000 | NA | 0.5 | Range
Average | ND | ND | ND | ND | ND | | Industrial waste discharge | | Ethyl-tert-butyl ether (ETBE) | ppb | NA | NA | 3 | Range
Average | ND | ND | ND | ND | ND | | Used as gasoline additive | | tert-Amyl-methyl ether (TAME) | ppb | NA | NA | 3 | Range
Average | ND | ND | ND | ND | ND | | Used as gasoline additive | | tert-Butyl alcohol (TBA) | ppb | NL = 12 | NA | 2 | Range
Average | ND | ND | ND | ND | ND | | MTBE breakdown product; used as gasoline additive | | Nitrosamine Compounds | | | | 1 | | | | 1 | | 1 | 1 | | | N-Nitrosodimethylamine (NDMA) | ppt | NL = 10 | 3 | (2) | Range
Average | ND | ND | ND | 2.5 | ND | ND - 3.0
ND | - | | N-Nitrosodiethylamine (NDEA) | ppt | NL = 10 | NA | (2) | Range
Average | ND | ND | ND | ND | ND | ND | | | N-Nitrosodi-n-propylamine (NDPA) | ppt | NL = 10 | NA | (2) | Range
Average | ND | ND | ND | ND | ND | ND | Byproducts of drinking water chloramination; industrial processes | | N-Nitrosomethylethylamine (NMEA) | ppt | NA | NA | (2) | Range
Average | ND | ND | ND | ND | ND | ND | | | N-Nitrosodi-n-butylamine (NDBA) | ppt | NA | NA | (2) | Range
Average | 2.5 | ND | ND | ND | ND | ND | | | | | | | 1 | Elliuellis a | | - | ent Plant Efflu | | | | | |---|--------------|-------------|------------|--------------------------|------------------|-----------------|-----------------|-----------------|------------------|-------------------|------------------------|---| | Parameter | Units | State MCL | PHG | State DLR/
CCRDL (RL) | Range
Average | Diemer
Plant | Jensen
Plant | Mills
Plant | Skinner
Plant | Weymouth
Plant | Distribution
System | Major Sources in Drinking Water | | N-Nitrosopyrollidine (NPYR) | ppt | NA | NA | (2) | Range
Average | ND | ND | ND | ND | ND | ND | Byproducts of drinking water chloramination; industrial processes | | N-Nitrosopiperidine (NPIP) | ppt | NA | NA | (2) | Range
Average | ND | ND | ND | ND | ND | ND | Dyproducts of diffiking water chloratilination, industrial processes | | N-Nitrosomorpholine (NMOR) | ppt | NA | NA | (2) | Range
Average | ND | ND | ND | ND | ND | ND | Industrial processes | | Perfluoroalkyl and Polyfluoroalkyl Substances (| PFAS) Analyz | ed by EPA I | Methods 53 | 3 and 537.1 (| n,o) | | | , | | | | | | Perfluorooctanoic Acid (PFOA) | ppt | NL = 5.1 | 0.007 | 4 | Range
Average | ND | ND | ND | ND | ND | | | | Perfluorooctanesulfonic Acid (PFOS) | ppt | NL = 6.5 | 1 | 4 | Range
Average | ND | ND | ND | ND | ND | | | | Perfluorobutanesulfonic acid (PFBS) | ppt | NL = 500 | NA | 3 | Range
Average | ND | ND | ND | ND | ND | | | | Perfluorononanoic acid (PFNA) | ppt | NA | NA | 4 | Range
Average | ND | ND | ND | ND | ND | | | | Perfluorohexanesulfonic acid (PFHxS) | ppt | NL = 3 | NA | 3 | Range
Average | ND | ND | ND | ND | ND | | | | Perfluoroheptanoic acid (PFHpA) | ppt | NA | NA | 3 | Range
Average | ND | ND | ND | ND | ND | | | | Perfluorodecanoic acid (PFDA) | ppt | NA | NA | 3 | Range
Average | ND | ND | ND | ND | ND | | Industrial chemical factory discharges; runoff/leaching from landfills; used in fire-retarding foams and various industrial | | Perfluorododecanoic acid (PFDoA) | ppt | NA | NA | 3 | Range
Average | ND | ND | ND | ND | ND | | processes | | Perfluorohexanoic Acid (PFHxA) | ppt | NL = 1,000 | NA | 3 | Range
Average | ND | ND | ND | ND | ND | | | | Perfluoroundecanoic acid (PFUnA) | ppt | NA | NA | 2 | Range
Average | ND | ND | ND | ND | ND | | | | 4,8-dioxa-3H-perfluorononanoate (ADONA) | ppt | NA | NA | 3 | Range
Average | ND | ND | ND | ND | ND | | | | F-53B Major (11CI-PF3OUdS) | ppt | NA | NA | 5 | Range
Average | ND | ND | ND | ND | ND | | | | F-53B Minor (9CI-PF3ONS) | ppt | NA | NA | 2 | Range
Average | ND | ND | ND | ND | ND | | | | GenX (HFPO-DA) | ppt | NA | NA | 5 | Range
Average | ND | ND | ND | ND | ND | | | | Perfluoroalkyl and Polyfluoroalkyl Substances (| PFAS) Analyz | ed by EPA I | Method 537 | 7.1 Only (n) | | | | | | | | | | Perfluorotetradecanoic acid (PFTA) | ppt | NA | NA | 8 | Range
Average | ND | ND | ND | ND | ND | | | | Perfluorotridecanoic acid (PFTrDA) | ppt | NA | NA | 7 | Range
Average | ND | ND | ND | ND | ND | | Industrial chemical factory discharges; runoff/leaching from landfills; used in fire-retarding foams and various industrial | | N-ethyl Perfluorooctanesulfonamidoacetic acid (NEtFOSAA) | ppt | NA | NA | 5 | Range
Average | ND | ND | ND | ND | ND | | processes | | N-methyl Perfluorooctanesulfonamidoacetic acid (NMeFOSAA) | ppt | NA | NA | 6 | Range
Average | ND | ND | ND | ND | ND | | | | | | | | State DI DI | Linacints | | | ent Plant Efflu | | · | | | |--|--------------|-------------|------------|--------------------------|------------------|---------------------|---------------------|---------------------|---------------------|---------------------|------------------------|---| | Parameter | Units | State MCL | PHG | State DLR/
CCRDL (RL) | Range
Average | Diemer
Plant | Jensen
Plant | Mills
Plant | Skinner
Plant | Weymouth
Plant | Distribution
System | Major Sources in Drinking Water | | Perfluoroalkyl and Polyfluoroalkyl Substances (I | PFAS) Analyz | ed by EPA I | Method 533 | Only (n) | | | | | | | | | | 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | ppt | NA | NA | 3 | Range | ND | ND | ND | ND | ND | | | | | FF- | | | | Average | | – | | | | | | | 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | ppt | NA | NA | 5 | Range | ND | ND | ND | ND | ND | | | | | | | | | Average
Range | | | | | | | | | 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | ppt | NA | NA | 5 | Average | ND | ND | ND | ND | ND | | | | | | | | | Range | | | | | | | | | Perfluoro-3-methoxypropanoic acid (PFMPA) | ppt | NA | NA | 4 | Average | ND | ND | ND | ND | ND | | | | Perfluoro-4-methoxybutanoic acid (PFMBA) | ppt | NA | NA | 3 | Range | ND | ND | ND | ND | ND | | | | 1 emidoro-4-metrioxybutaniolo acid (1 1 MBA) | ррг | INA | IVA | 3 | Average | ND | IND | ND | ND | ND | | | | Perfluorobutanoic acid (PFBA) | ppt | NA | NA | 5 | Range | ND | ND | ND | ND | ND | | Industrial chemical factory discharges; runoff/leaching from landfills; used in fire-retarding foams and various industrial | | | | | | | Average | | | | | | | processes | | Perfluoroheptanesulfonic acid (PFHpS) | ppt | NA | NA | 3 | Range
Average | ND | ND | ND | ND | ND | | | | | | | | | Range | | | | | | | | | Perfluoropentanesulfonic acid (PFPeS) | ppt | NA | NA | 4 | Average | ND | ND | ND | ND | ND | | | | Perfluoropentanoic acid (PFPeA) | ppt | NA | NA | 3 | Range | ND | ND | ND | ND | ND | | | | remuoropentanoic acid (FFFEA) | ррі | INA | INA | 3 | Average | ND | ND | ND | ND | ND | | | | Nonafluoro-3,6-dioxaheptanoic acid (NFDHA) | ppt | NA | NA | 20 | Range | ND | ND | ND | ND | ND | | | | . , , | | | | | Average | | | | | | | | | Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA) | ppt | NA | NA | 3 | Range | ND | ND | ND | ND | ND | | | | Miscellaneous (p) | | | | | Average | | | | | | | | | Calcium Carbonate Precipitation Potential (CCPP) | ppm | NA | NA | NA | Range | 5.4 - 10 | 2.0 - 4.4 | 1.2 - 4.4 | 5.0 - 10 | 5.5 - 11 | | | | (as CaCO ₃) | | | | | Average
Range | 7.7
12.4 - 12.6 | 3.4 | 2.9
12.2 - 12.3 | 7.6
12.3 - 12.4 | 8.4
12.4 - 12.6 | | Measures of the balance between pH and calcium carbonate | | Corrosivity (as Aggressiveness Index) (r) | Al | NA | NA | NA | Average | 12.5 | 12.2 | 12.2 | 12.4 | 12.5 | | saturation in the water | | Corrosivity (as Saturation Index) (s) | SI | NA | NA | NA | Range | 0.58 - 0.65
0.62 | 0.36 - 0.39
0.38 | 0.40 - 0.41
0.40 | 0.46 - 0.57
0.52 | 0.60 - 0.65
0.62 | | | | pH | pH Units | NA | NA | NA | Average
Range | 8.2 | 8.2 - 8.3 | 8.7 - 8.8 | 8.1 | 8.2 | | Not applicable | | | | | | | Average | | 8.3 | 8.7 | | | | Gas produced by the decay of naturally-occurring uranium in soil | | Radon (k) | pCi/L | NA | NA | 100 | Range
Average | ND | ND | ND | ND | ND | | and water | | Total Dissolved Solids, Calculated (TDS) (t) | ppm | 1,000 | NA | NA | Range | 492 - 682
590 | 295 - 313
304 | 169 - 262
222 | 493 - 597
559 | 506 - 680
587 | | Runoff/leaching from natural deposits | | | L | | | <u> </u> | Average | 590 | 304 | 222 | 559 | 287 | | | ### **DEFINITION OF TERMS AND FOOTNOTES** * As a wholesale water system, Metropolitan provides its member agencies with relevant treated water information and monitoring results that they may need for their annual water quality report. Metropolitan compliance with state or federal regulations is determined at the treatment plant effluent
locations and/or distribution system, or plant influent per frequency stipulated in Metropolitan's State-approved monitoring plan, and is based on TT, RAA, or LRAA, as appropriate. Data above Metropolitan's laboratory reporting limit (RL) but below the State DLR or CCRDL are reported as ND in this report; these data are available upon request. Metropolitan was in compliance with all primary and secondary drinking water regulations for the current monitoring period. Note: Metropolitan monitors the distribution system for constituents under the Revised Total Coliform Rule (RTCR), Water Fluoridation Standards, and Disinfectants/Disinfection Byproduct Rule (TTHM, HAA5, and total chlorine residual). Constituents with grayed out areas in the distribution system column are routinely monitored at treatment plant effluents and not in the distribution system. #### **Definition of Terms** | Al | Aggressiveness Index | MFL | Million Fibers per Liter | RAA | Running Annual Average; highest RAA is the highest of all | |-------------------|--|--------|---|-------|---| | AL | Action Level | MRDL | Maximum Residual Disinfectant Level | | RAAs calculated as an average of all the samples collected | | Average | Arithmetic mean | MRDLG | Maximum Residual Disinfectant Level Goal | | within a 12-month period | | CaCO ₃ | Calcium Carbonate | MRL | Minimum Reporting Level | Range | Minimum and maximum values; range and | | CCPP | Calcium Carbonate Precipitation Potential | NA | Not Applicable | | average values are the same if a single value is reported for | | CCRDL | Consumer Confidence Report Detection Level | ND | Not Detected at or above DLR or RL | | samples collected once or twice annually | | CFE | Combined Filter Effluent | NL | Notification Level to SWRCB | SI | Saturation Index (Langelier) | | CFU | Colony-Forming Units | NTU | Nephelometric Turbidity Units | TDS | Total Dissolved Solids | | DLR | Detection Limit for Purposes of Reporting | pCi/L | picoCuries per Liter | TON | Threshold Odor Number | | EPA | Environmental Protection Agency | PHG | Public Health Goal | TT | Treatment Technique is a required process intended to reduce | | LRAA | Locational Running Annual Average; highest LRAA | ppb | parts per billion or micrograms per liter (µg/L) | | the level of a contaminant in drinking water | | | is the highest of all LRAAs calculated as an average | ppm | parts per million or milligrams per liter (mg/L) | UCMR5 | Fifth Unregulated Contaminant Monitoring Rule | | | of all samples collected within a 12-month period | ppq | parts per quadrillion or picograms per liter (pg/L) | μS/cm | microSiemen per centimeter; or micromho per centimeter | | MCL | Maximum Contaminant Level | ppt | parts per trillion or nanograms per liter (ng/L) | | (µmho/cm) | | MCLG | Maximum Contaminant Level Goal | PWS ID | Public Water System Identification | | | - (a) Metropolitan monitors turbidity at the CFE locations using continuous and grab samples. Turbidity, a measure of cloudiness of the water, is an indicator of treatment performance. Turbidity was in compliance with the treatment technique of primary drinking water standard and the secondary drinking water standard of less than 5 NTU. - (b) Per the Surface Water Treatment Rule, treatment techniques that remove or inactivate Giardia cysts will also remove HPC bacteria, Legionella, and viruses. Legionella and virus monitoring are not required. - (c) Compliance is based on monthly samples from the distribution system. No Level 1 Assessments occurred and no E. coli was detected. - (d) Metropolitan analyzes HPC bacteria in plant effluent to monitor treatment process efficacy. - e) Samples collected in 2024 and reported once every three-year compliance cycle until the next required triennial monitoring in 2027. - (f) Metropolitan uses acrylamide for water treatment processes and was in compliance with the treatment technique requirements regarding its use when treating drinking water. Metropolitan does not use any epichlorohydrins. - (g) Compliance with the State MCL for aluminum is based on RAA. - (h) Samples collected in 2020 for the required 9-year monitoring cycle (2020-2028). - (i) As a wholesaler, Metropolitan has no retail customers and is not required to collect samples at consumer taps. Compliance monitoring under Title 22 is required at the treatment plant effluents. - j) Metropolitan was in compliance with all provisions of the State's fluoridation requirements. When fluoride feed systems were temporarily out of service during treatment plant shutdowns and/or maintenance work, an occasional fluoride level was measured below 0.7 mg/L. - (k) Samples are collected quarterly for gross beta particle activity, and annually for tritium and strontium-90. Gross alpha particle activity, radium, and uranium data are from samples collected quarterly in 2023 for the required triennial monitoring (2023-2025). Radon is monitored voluntarily with the triennial radionuclides. -) Compliance with the State and Federal MCLs is based on RAA or LRAA, as appropriate. Plant core locations for TTHM and HAA5 are service connections specific to each of the treatment plant effluents. - m) Metropolitan's TDS compliance data are based on flow-weighted monthly composite samples collected twice per year (April and October). The 12-month statistical summary of flow-weighted data is reported in the "Other Parameters" section. - CRDL is based on the EPA UCMR5 MRLs for the 29 constituents detected by EPA Methods 533 and 537.1. Results below CCRDLs are considered "ND". - (o) Average of the results from the two analytical methods. Plant Effluent 3/28/2025 - (p) Voluntary monitoring of constituents provided for informational purposes. - (q) Positive CCPP indicates non-corrosive; tendency to precipitate and/or deposit scale on pipes. Negative CCPP indicates corrosive; tendency to dissolve calcium carbonate. Reference: Standard Method 2330 - (r) Al ≥ 12.0 indicates non-aggressive water; Al 10.0 11.9 indicates moderately aggressive water; Al≤ 10.0 indicates highly aggressive water. Reference: ANSI/AWWA Standard C400-93 (R98) - (s) Positive SI indicates non-corrosive; tendency to precipitate and/or deposit scale on pipes. Negative SI indicates corrosive; tendency to dissolve calcium carbonate. Reference: Standard Method 2330 - (t) Statistical summary represents 12 months of flow-weighted data and values may be different than the TDS reported to meet compliance with secondary drinking water standards. Metropolitan's calculated TDS goal is 500 mg/L. | | | | | Treat | ment Plant Influ | uent * | | | |---|------------------|----------------------|------------------|--------------------|-------------------|-------------------|------------------|---| | | | Range | Diemer | Jensen | Mills | Skinner | Weymouth | Major Sources in Drinking Water | | Parameter | Units | Average | Plant | Plant (a) | Plant | Plant | Plant | | | Percent State Water Project | % | Range | 0 - 98 | 100 | 100 | 0 - 64 | 0 - 100 | Not applicable | | COMPLIANCE MONITORING PAI | RAMETERS | | | | | | | | | Microbiological | | | | | | | | | | Total Coliform Bacteria | MPN/100 mL | Range
Median | ND - 480
57 | 64 - 11,000
260 | 28 - 1,000
310 | 81 - 3,100
640 | 1 - 3,700
500 | Naturally present in the environment | | Escherichia coli (E. coli) | MPN/100 mL | Range | ND - 2 | ND - 1 | ND - 1 | ND - 6 | ND - 4 | Human and animal fecal waste | | , , | IVIPIN/ TOO TIIL | Median | ND | ND | 1 | 3 | ND | numan and anima recai waste | | Chemical | I | Range | 92 - 130 | 88 - 97 | 62 - 77 | 100 - 135 | 84 - 130 | Runoff/leaching of natural deposits; carbonate, bicarbonate, hydroxide, | | Alkalinity, Total (as CaCO ₃) | ppm | Highest RAA | 116 | 93 | 72 | 116 | 116 | and occasionally borate, silicate, and phosphate | | Fluoride | ppm | Range | 0.2 - 0.4 | 0.3 | 0.1 | 0.2 - 0.3 | 0.1 - 0.4 | Erosion of natural deposits; discharge from fertilizer and aluminum | | T Idolido | ppm | Average | 0.3 | | | 0.3 | 0.3 | factories | | Total Organic Carbon (TOC) | ppm | Range
Highest RAA | 2.5 - 3.7
3.4 | 2.7 - 3.3
3.2 | 2.4 - 4.2
3.8 | 3.0 - 3.7
3.5 | 2.6 - 3.8
3.5 | Various natural and man-made sources | | OTHER PARAMETERS | | . ngnoot . u u t | 0 | 0.2 | 0.0 | 0.0 | 0.0 | | | Aluminum | ppb | Range
Average | ND | 120 | ND | 58 | ND | Natural deposits erosion | | Antimony | ppb | Range
Average | ND | ND | ND | ND | ND | Petroleum refinery discharges; fire retardants; solder; electronics | | Arsenic | ppb | Range
Average | ND | ND | ND | ND | ND | Natural deposits erosion, glass and electronics production wastes | | Barium | ppb | Range
Average | 132 | ND | ND | ND | 132 | Oil and metal refineries discharges; natural deposits erosion | | Beryllium | ppb | Range
Average | ND | ND | ND | ND | ND | Discharge from metal refineries, aerospace, and defense industries | | Boron | ppb | Range
Average | 160 | 190 | 150 | 150 | 160 | Runoff/leaching from natural deposits; Industrial wastes | | Cadmium | ppb | Range
Average | ND | ND | ND | ND | ND | Discharge from electroplating, industrial factories, and metal refineries; runoff from waste batteries and paints; natural deposits erosion | | Chromium | ppb | Range
Average | ND | ND | ND | ND | ND | Discharge from steel and pulp mills; natural deposits erosion | | Chromium VI | ppb | Range
Average | ND | ND | ND | ND | ND | Runoff/leaching from natural deposits; Industrial wastes | | Copper | ppm | Range
Average | ND | ND | ND | ND | ND | Natural deposits erosion; leaching from wood preservatives | | Cryptosporidium (b) | oocysts/10 L |
Range
Average | ND - 1
ND | ND | ND - 2
ND | ND | ND - 2
ND | Human and animal fecal waste | | Giardia (b) | cysts/10 L | Range
Average | ND - 9
1 | ND | ND - 4
1 | ND | ND - 5
ND | | | Hardness, Total (as CaCO ₃) | ppm | Range
Average | 96 - 306
256 | 135 - 158
145 | 60 - 96
78 | 166 - 308
244 | 91 - 304
254 | Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium and calcium present in the water | | Iron | ppb | Range
Average | ND | ND | ND | ND | ND | Leaching from natural deposits; industrial wastes | | Lead | ppb | Range
Average | ND | ND | ND | ND | ND | Internal corrosion of household water plumbing systems; industrial manufacturers' discharge; erosion of natural deposits | | Lithium | ppb | Range
Average | 35 - 50
42 | 10 - 11
10 | ND | 21 - 36
28 | 36 - 51
44 | Naturally-occurring; used in electrochemical cells, batteries, and organic syntheses and pharmaceuticals | | Manganese | ppb | Range
Average | ND | ND | ND | ND | ND | Leaching from natural deposits | | Mercury | ppb | Range
Average | ND | ND | ND | ND | ND | Erosion of natural deposits; factory discharge; landfill runoff | | | | | | Treat | ment Plant Influ | ient * | | | |----------------------|-------------|------------------|------------------|----------------------|------------------|------------------|------------------|---| | | | Range | Diemer | Jensen | Mills | Skinner | Weymouth | Major Sources in Drinking Water | | Parameter | Units | Average | Plant | Plant ^(a) | Plant | Plant | Plant | | | Nickel | ppb | Range
Average | ND | ND | ND | ND | ND | Erosion of natural deposits; discharge from metal factories | | Perchlorate | ppb | Range
Average | ND | ND | ND | ND | ND | Industrial waste discharge | | рН | pH Units | Range
Average | 7.9 - 8.4
8.2 | 7.5 - 8.0
7.7 | 7.6 - 8.2
7.9 | 7.7 - 8.7
8.2 | 7.9 - 8.3
8.1 | Not applicable | | Selenium | ppb | Range
Average | ND | ND | ND | ND | ND | Refineries, mines, and chemical waste discharge; runoff from livestock lots | | Specific Conductance | μS/cm | Range | 667 - 1,080 | 452 - 495 | 256 - 456 | 788 - 1,057 | 530 - 1,065 | Substances that form ions in water; seawater influence | | | p = 1 = 111 | Average | 921 | 475 | 361 | 857 | 914 | , | | Silver | ppb | Range
Average | ND | ND | ND | ND | ND | Industrial discharges | | Thallium | ppb | Range
Average | ND | ND | ND | ND | ND | Leaching from ore processing; discharge from electronics, glass, and pharmaceutical factories | | Turbidity | NTU | Range | 0.2 - 4.5 | 0.5 - 16 | 0.5 - 6.1 | 0.7 - 3.2 | 0.1 - 5.4 | Soil runoff | | Turbidity | NIU | Average | 1.0 | 2.0 | 1.1 | 1.4 | 0.7 | Soli turioli | | Vanadium | ppb | Range
Average | ND | ND | ND | ND | ND | Naturally-occurring; industrial waste discharge | | Zinc | ppm | Range
Average | ND | ND | ND | ND | ND | Runoff/leaching from natural deposits; industrial wastes | ### **DEFINITION OF TERMS AND FOOTNOTES** ### **Definition of Terms** | Average | Arithmetic mean | ppm | parts per million or milligrams per liter (mg/L) | |-------------------|--|-------|--| | CaCO ₃ | Calcium Carbonate | RAA | Running Annual Average; highest RAA is the highest of all | | MPN | Most Probable Number | | Running Annual Averages calculated as an average | | DLR | Detection Limits for Purposes of Reporting | | of the all samples collected within a 12-month period | | MCL | Maximum Contaminant Level | Range | Results based on minimum and maximum values; range and average | | ND | Not Detected at or above DLR or RL | | values are the same if a single value is reported for sample collected | | NTU | Nephelometric Turbidity Units | | once or twice annually | | PHG | Public Health Goal | μS/cm | microSiemen per centimeter; or micromho per centimeter (µmho/cm) | | ppb | parts per billion or micrograms per liter (μg/L) | | | - (a) Results reflect water quality of two supplies, which include Castaic Lake and the groundwater well located at the Jensen Treatment Plant facility. Based on a 10-year average, groundwater accounts for up to 0.19% of the overall Jensen treatment plant flow. Flow-weighted results are available upon request. - (b) Cryptosporidium and/or Giardia were detected in raw water after heavy storm and runoff into Silverwood Lake. ^{*} As a wholesale water system, Metropolitan provides its member agencies with relevant source water information and monitoring results that they may need for their annual water quality report. Metropolitan compliance with state or federal regulations is determined at the treatment plant effluent locations and/or distribution system or plant influent per frequency stipulated in Metropolitan's State-approved monitoring plan. MCLs, PHGs, and state DLRs are included in the Treatment Plant Effluent Report. Data above Metropolitan's laboratory reporting limit (RL) but below the State DLR are reported as ND in this report. | Parameter | Units | Range
Average | Diamond
Valley Lake | Lake Skinner | Lake Havasu | Lake
Mathews | Castaic Lake | Lake Perris | Silverwood
Lake | Major Sources in Drinking Water | | | | |------------------------------------|-------|------------------|------------------------|--------------|-------------|-----------------|--------------|-------------|--------------------|--|--|--|--| | Percent State Water Project | % | Range | 100 | 12 - 58 | 0 | 0 | 100 | 100 | 100 | Not applicable | | | | | DRGANIC CHEMICALS | | | | | | | | | | | | | | | Synthetic Organic Compounds (a) | | | | | | | | | | | | | | | 1,2,3-Trichloropropane (1,2,3-TCP) | ppt | Range
Average | ND Discharge from industrial and agrichemical factories;
byproduct of producing other compounds and pesticides;
leaching from hazardous waste sites | | | | | 2,4,5-TP (Silvex) | ppb | Range
Average | ND Residue of banned herbicide | | | | | 2,4-D | ppb | Range
Average | ND Runoff from herbicide used on row crops, rangeland, lawns, and aquatic weeds | | | | | Alachlor | ppb | Range
Average | ND Runoff from herbicide used on row crops | | | | | Atrazine | ppb | Range
Average | ND Runoff from herbicide used on row crops and along railroad and highway right-of-ways | | | | | Bentazon | ppb | Range
Average | ND Runoff/leaching from herbicide used on beans, peppers, corn, peanuts, rice, and ornamental grasses | | | | | Benzo(a)pyrene | ppt | Range
Average | ND Leaching from water storage tank linings and distribution lines | | | | | Carbofuran | ppb | Range
Average | ND Leaching of soil fumigant used on rice, alfalfa, and grape vineyards | | | | | Chlordane | ppt | Range
Average | ND Residue of banned insecticide | | | | | Dalapon | ppb | Range
Average | ND Runoff from herbicide used on right-of-ways, and crops and landscape maintenance | | | | | Di(2-ethylhexyl)adipate | ppb | Range
Average | ND Discharge from chemical factories | | | | | Di(2-ethylhexyl)phthalate | ppb | Range
Average | ND Discharge from rubber and chemical factory; inert ingredient in pesticides | | | | | Dibromochloropropane (DBCP) | ppt | Range
Average | ND Banned nematocide that may still be present in soils due to runoff/leaching | | | | | Dinoseb | ppb | Range
Average | ND Runoff from herbicide used on soybeans, vegetables, and fruits | | | | | Dioxin (2,3,7,8-TCDD) | ppq | Range
Average | ND Waste incineration emissions; chemical factory discharge | | | | | Diquat | ppb | Range
Average | ND Runoff from herbicide used for terrestrial and aquatic weeds | | | | | Endothall | ppb | Range
Average | ND | | | | | Endrin | ppb | Range
Average | ND Residue of banned insecticide and rodenticide | | | | | Ethylene Dibromide (EDB) | ppt | Range
Average | ND Petroleum refinery discharges; underground gas tank leaks;
banned nematocide that may still be present in soils due to
runoff and leaching | | | | | Glyphosate | ppb | Range
Average | ND Runoff from herbicide use | | | | | Heptachlor | ppt | Range
Average | ND Residue of banned insecticide | | | | | Heptachlor Epoxide | ppt | Range
Average | ND Breakdown product of heptachlor | | | | | Hexachlorobenzene | ppb | Range
Average | ND Discharge from metal refineries and agrichemicals factories; wastewater chlorination reaction byproduct | | | | | Hexachlorocyclopentadiene | ppb | Range
Average | ND Discharge from chemical factories | | | | | Lindane | ppt | Range
Average | ND Runoff/leaching from insecticide used on cattle, lumber, and gardens | | | | | Methoxychlor | ppb | Range
Average | ND Runoff/leaching from insecticide uses on fruits, vegetables, alfalfa, and livestock | | | | | Molinate (Ordram) | ppb | Range
Average | ND Runoff/leaching from herbicide used on rice | | | | | Oxamyl (Vydate) | ppb | Range
Average | ND Runoff/leaching from insecticide uses | | | | | Parameter | Units | Range
Average | Diamond
Valley Lake | Lake Skinner | Lake Havasu | Lake
Mathews | Castaic Lake | Lake Perris | Silverwood
Lake | Major Sources in Drinking Water | |---|-------|------------------|------------------------|--------------|-------------|-----------------|--------------|-------------|--------------------|--| | Pentachlorophenol | ppb | Range
Average | ND Discharge from wood preserving factories other insecticidal and herbicidal uses | | Picloram | ppb | Range
Average | ND Herbicide runoff | | Polychlorinated Biphenyls
(PCBs) | ppt | Range
Average | ND Runoff from landfills; discharge of waste chemicals | | Simazine | ppb | Range
Average | ND Herbicide runoff | | Thiobencarb | ppb | Range
Average | ND Runoff/leaching from herbicide used on rice | | Toxaphene | ppb | Range
Average | ND Runoff/leaching from insecticide used on cotton and cattle | | Volatile Organic Compounds | | | | | | | | | | | | 1,1,1-Trichloroethane | ppb | Range
Average | ND Metal degreasing site discharge; manufacture of food wrappings | | 1,1,2,2-Tetrachloroethane | ppb | Range
Average | ND Discharge from industrial and agrichemical factories; solvent used in production of TCE, pesticides, varnish, and lacquers | | 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113) | ppm | Range
Average | ND Discharge from metal degreasing sites and other factories;
dry cleaning solvent; refrigerant | | 1,1,2-Trichloroethane | ppb | Range
Average | ND Discharge from industrial chemical factories | | 1,1-Dichloroethane | ppb | Range
Average | ND Extraction and degreasing solvent; fumigant | | 1,1-Dichloroethylene | ppb | Range
Average | ND Discharge from industrial chemical factories | | 1,2,4-Trichlorobenzene | ppb | Range
Average | ND Discharge from textile-finishing factories | | 1,2-Dichlorobenzene | ppb | Range
Average | ND Discharge from industrial chemical factories | | 1,2-Dichloroethane | ppb | Range
Average | ND Discharge from industrial chemical factories | | 1,2-Dichloropropane | ppb | Range
Average | ND Industrial chemical factory discharge; primary component of some fumigants | | 1,3-Dichloropropene | ppt | Range
Average | ND Runoff/leaching from nematocide used on croplands | | 1,4-Dichlorobenzene | ppb | Range
Average | ND Discharge from industrial chemical factories | | Benzene | ppb | Range
Average | ND Plastics factory discharge; gas tanks and landfill leaching | | Carbon Tetrachloride | ppt | Range
Average | ND Discharge from chemical plants and other industrial waste | | cis -1,2-Dichloroethylene | ppb | Range
Average | ND Industrial chemical factory discharge; byproduct of TCE and PCE biodegradation | | Dichloromethane (Methylene Chloride) | ppb | Range
Average | ND Discharge from pharmaceutical and chemical factories | | Ethylbenzene | ppb | Range
Average | ND Petroleum refinery discharge; industrial chemical factories | | Methyl-tert-butyl ether (MTBE) | ppb | Range
Average | ND Gasoline discharge from watercraft engines | | Monochlorobenzene | ppb | Range
Average | ND Discharge from industrial and agrichemical factories, and dry cleaners | | Styrene | ppb | Range
Average | ND Rubber and plastics factories discharge; landfill leaching | | Tetrachloroethylene (PCE) | ppb | Range
Average | ND Discharge from factories, dry cleaners, and auto shops | | Toluene | ppb | Range
Average | ND Discharge from petroleum and chemical refineries | | trans-1,2-Dichloroethylene | ppb | Range
Average | ND Industrial chemical factory discharge; byproduct of TCE and PCE biodegradation | | Trichloroethylene (TCE) | ppb | Range
Average | ND Discharge from metal degreasing sites and other factories | | | | | | | , | | | | | | |-----------------------------------|-------|------------------|------------------------|------------------|------------------|------------------|----------------|----------------|--------------------|---| | Parameter | Units | Range
Average | Diamond
Valley Lake | Lake Skinner | Lake Havasu | Lake
Mathews | Castaic Lake | Lake Perris | Silverwood
Lake | Major Sources in Drinking Water | | Trichlorofluoromethane (Freon-11) | ppb | Range
Average | ND Industrial factory discharge; degreasing solvent; propellant | | Vinyl Chloride | ppt | Range
Average | ND Leaching from PVC piping; plastic factory discharge;
byproduct of TCE and PCE biodegradation | | Xylenes, Total | ppm | Range
Average | ND Discharge from petroleum and chemical refineries; fuel solvent | | INORGANIC CHEMICALS | | | | | | | | | | | | Aluminum | ppb | Range
Average | ND | 58 | ND | ND | 120 | ND | 71 | Natural deposits erosion | | Antimony | ppb | Range
Average | ND Petroleum refinery discharges; fire retardants; solder; electronics | | Arsenic | ppb | Range
Average | ND | ND | 2 | 2 | ND | ND | ND | Natural deposits erosion, glass and electronics production wastes | | Asbestos (b) | MFL | Range
Average | ND Natural deposits erosion | | Barium | ppb | Range
Average | ND | ND | 143 | 133 | ND | ND | ND | Oil and metal refineries discharge; natural deposits erosion | | Beryllium | ppb | Range
Average | ND Discharge from metal refineries, aerospace, and defense industries | | Cadmium | ppb | Range
Average | ND Discharge from electroplating, industrial factories, and metal refineries; runoff from waste batteries and paints; natural deposits erosion | | Chromium | ppb | Range
Average | ND Discharge from steel and pulp mills; natural deposits erosion | | Chromium VI | ppb | Range
Average | ND Runoff/leaching from natural deposits; discharge from industrial waste factories | | Copper | ppm | Range
Average | ND Natural deposits erosion; leaching from wood preservatives | | Cyanide | ppb | Range
Average | ND Discharge from steel/metal, plastic, and fertilizer factories | | Fluoride | ppm | Range
Average | 0.1 | 0.2 - 0.3
0.2 | 0.3 - 0.4
0.3 | 0.3 - 0.4 | 0.3 | 0.1 | ND | Erosion of natural deposits; discharge from fertilizer and aluminum factories | | Lead | ppb | Range
Average | ND Industrial manufacturers' discharge; erosion of natural deposits | | Mercury | ppb | Range
Average | ND Erosion of natural deposits; factory discharge; landfill runoff | | Nickel | ppb | Range
Average | ND Erosion of natural deposits; discharge from metal factories | | Nitrate (as Nitrogen) | ppm | Range
Average | ND | ND | 0.6 | ND | 0.5 | ND | 0.5 | Runoff and leaching from fertilizer use; leaching from septic tank and sewage; natural deposits erosion | | Nitrite (as Nitrogen) | ppm | Range
Average | ND Runoff and leaching from fertilizer use; septic tank and sewage; natural deposits erosion | | Perchlorate | ppb | Range
Average | ND | ND | 1.8 | ND | ND | ND | ND | Industrial waste discharge | | Selenium | ppb | Range
Average | ND Refineries, mines, and chemical waste discharge; runoff from livestock lots | | Thallium | ppb | Range
Average | ND Leaching from ore processing; discharge from electronics, glass, and pharmaceutical factories | | RADIOLOGICALS (c) | | _ | | | | | | T= | | | | Gross Alpha Particle Activity | pCi/L | Range
Average | ND - 6.1
ND | ND - 3.6
ND | ND - 6.2
ND | ND - 3.2
ND | ND - 3.1
ND | ND - 3.2
ND | ND - 5
ND | Erosion of natural deposits | | Gross Beta Particle Activity | pCi/L | Range
Average | ND | ND - 5
ND | ND - 5.8
4.1 | 4.4 - 6.1
5.2 | ND | ND | ND | Decay of natural and man-made deposits | | Radium-226 | pCi/L | Range
Average | ND | | Radium-228 | pCi/L | Range
Average | ND | ND | ND | ND | ND - 1
ND | ND | ND | Erosion of natural deposits | | Combined Radium-226 + 228 | pCi/L | Range
Average | ND | ND | ND | ND | ND - 1
ND | ND | ND | | | Strontium-90 | pCi/L | Range
Average | ND Decay of natural and man-made deposits | | Processor Proc | | | | | 000.00 11 | aters (PVV | | | | | | |--|--|-------------|-----------|----------|--------------|-------------|---------|-------------------|-------------|-----------|---| | March Marc | | | | | 1 | 1 | | | | | | | Part | Paramotor | Unite | _ | | Lake Skinner | Lake Havasu | | Castaic Lake | Lake Perris | | Major Sources in Drinking Water | | Post Register
Post Register Post Register Post Register Post Register Post P | Tritium | | Range | ND Decay of natural and man-made deposits | | Part | Uranium | pCi/L | Range | ND | | | | | | | Erosion of natural deposits | | Amende | AESTHETIC PARAMETERS (d) | | 7.170.ugo | | | 2.0 | 2.0 | 0.0 | 1.0 | | | | According April | Aluminum | ppb | | ND | 58 | ND | ND | 120 | ND | 71 | Natural deposits erosion | | Approach Color C | Chloride | ppm | | | | | 108 | | | | Runoff/leaching from natural deposits; seawater influence | | Appendix | Color | Color Units | | 5 | | | 3 | | 5 | | Naturally-occurring organic materials | | No | Copper | ppm | | ND Natural deposits erosion; wood preservatives leaching | | Second Control Contr | Foaming Agents - Methylene Blue Active Substances (MBAS) | ppb | | ND Municipal and industrial waste discharges | | Average ND | Iron | ppb | | ND Leaching from natural deposits; industrial wastes | | Average Aver | Manganese | ppb | Average | ND | ND | ND | ND | ND | ND | 21 | Leaching from natural deposits | | Application Company Application Company Application Applicat | Methyl-tert-butyl ether (MTBE) | ppb | Average | ND Gasoline discharge from watercraft engines | | Part | Odor Threshold | TON | Average | 7 | 9 | 6 | 5 | 4 | 6 | 5 | Naturally-occurring organic materials | | Part Average 435 768 1,030 1,040 478 438 352 3 | Silver | ppb | Average | | | | | | | | Industrial discharges | | Average Aver | Specific Conductance | μS/cm | Average | 435 | 768 | 1,030 | 1,040 | 478 | 498 | 352 | Substances that form ions in water; seawater influence | | Average Aver | Sulfate | ppm | Average | | | | | | | | Runoff/leaching from natural deposits; industrial wastes | | Average 248 480 674 680 299 280 200 Numerisering from natural deposits NTU Range 0.4 - 0.8 1.0 - 2.2 0.5 - 0.6 1.8 0.7 1.5 Sol runoff | Thiobencarb | ppb | Average | | | | | | | | Runoff/leaching from rice herbicide | | Average N D Average N D N N N N N N N N | Total Dissolved Solids (TDS) | ppm | Average | 248 | 480 | | 680 | 299 | 280 | 200 | Runoff/leaching from natural deposits | | No. | Turbidity | NTU | Average | | | 0.6 | | | | | Soil runoff | | No. | Zinc | ppm | | ND Runoff/leaching from natural deposits; industrial wastes | | No. Range 4-24,000 40-61,000 9-110,000 7-5,200 NA (a) 51-580 110-4,600 Naturally present in the environment | | | | | | | | | | | | | Median 39 340 1,000 300 NA 320 1,200 Naturally present in the environment. | Microbiological | | Danas | 4 04 000 | 40 04 000 | 0 440 000 | 7 5 000 | I | F4 F00 | 140 4 600 | | | Range ND - 21 ND - 5 ND - 3 ND - 30 ND - 66 ND - 50 60 ND - 50 ND - 66 60 -50 | Total Coliform Bacteria | MPN/100 mL | | | | | | NA ^(e) | | | Naturally present in the environment | | Range 81 - 86 100 - 116 133 - 137 123 - 128 91 - 95 93 - 99 66 - 77 Runoff/leaching of natural deposits; carbonate, bicarbonate, bicarbonate, and phosphate | Escherichia coli (E. coli) | MPN/100 mL | Range | ND - 21 | ND - 5 | ND - 3 | ND - 30 | NA ^(e) | ND - 66 | ND - 50 | Human and animal fecal waste | | Average B4 108 135 126 93 96 72 hydroxide, and occasionally borate, silicate, and phosphate Average 24 52 78 74 37 26 18 Runoff/leaching from natural deposits; industrial wastes Average 104 105 172 245 293 319 291 296 143 149 117 120 68 99 Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits Runof | General Minerals | • | | | | | | | | • | | | Range 23 - 25 43 - 60 76 - 81 72 - 75 36 - 38 26 - 27 14 - 21 Runoff/leaching from natural deposits | Alkalinity, Total (as CaCO ₃) | ppm | | | | | | | | | | | Range 104 - 105 172 - 245 293 - 319 291 - 296 143 - 149 117 - 120 68 - 99 Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium and calcium present in the water water | Calcium | ppm | Range | 23 - 25 | 43 - 60 | 76 - 81 | 72 - 75 | 36 - 38 | 26 - 27 | 14 - 21 | | | Average 104 208 306 294 146 118 84 water Magnesium | Hardness, Total (as CaCO ₃) | ppm | _ | | 172 - 245 | 293 - 319 | | | | 68 - 99 | | | Average 1 | - , , , , | 1 15 | · | 104 | | | | | 118 | | | | Average 3.3 4.3 5.4 5.4 2.5 3.5 2.5 Solit present in the water; naturally-occurring | Magnesium | ppm | Average | | 20 | 27 | | 13 | | 9.6 | Runoff/leaching from natural deposits | | No | Potassium | ppm | Average | 3.3 | 4.3 | 5.4 | | 2.5 | 3.5 | 2.5 | Salt present in the water; naturally-occurring | | | Sodium | ppm | | | | | | | | | , | | Average 150 150 140 150 190 170 150 Runon/leaching from natural deposits; industrial wastes ithium 150 Runon/leaching from natural deposits; industrial wastes wastes 150 Runon/leaching from natural wastes 150 Runon/leaching from natural wastes 150 Runon/leaching from natura | Unregulated Contaminants | | | | | | | | | | | | ithium I nnh I I NI | Boron | ppb | Average | 150 | | | | | 170 | 150 | , | | | Lithium | ppb | | ND | | | | | ND | ND | , , , | | Parameter | Units | Range
Average | Diamond
Valley Lake | Lake Skinner | Lake Havasu | Source Water ³
Lake
Mathews | Castaic Lake | Lake Perris | Silverwood
Lake | Major Sources in Drinking Water | | |--|------------|------------------|------------------------|---------------|----------------|--|--------------|-------------|--------------------|---|--| | Vanadium | ppb | Range
Average | ND Naturally-occurring; industrial waste discharge | | | Dichlorodifluoromethane (Freon-12) | ppb | Range
Average | ND Industrial waste discharge | | | Ethyl-tert-butyl ether (ETBE) | ppb | Range
Average | ND lland an arration address. | | | tert -Amyl-methyl ether (TAME) | ppb | Range
Average | ND Used as gasoline additive | | | tert-Butyl alcohol (TBA) | ppb | Range
Average | ND MTBE breakdown product; used as gasoline additive | | | Perfluoroalkyl and Polyfluoroalkyl Substances | (PFAS) And | lyzed by EPA | Methods 53 | 3 and 537.1 (| f) | | | | | | | | Perfluorooctanoic Acid (PFOA) | ppt | Range
Average | ND | | | Perfluorooctanesulfonic Acid (PFOS) | ppt | Range
Average | ND | | | Perfluorobutanesulfonic acid (PFBS) | ppt | Range
Average | ND | | | Perfluorononanoic acid (PFNA) | ppt | Range
Average | ND | | | Perfluorohexanesulfonic acid (PFHxS) | ppt | Range
Average | ND | | | Perfluoroheptanoic acid (PFHpA) | ppt | Range
Average | ND | | | Perfluorodecanoic acid (PFDA) | ppt | Range
Average | ND Industrial chemical factory discharges; runoff/leaching from landfills; used in fire-retarding foams and various industrial processes | | | Perfluorododecanoic acid (PFDoA) | ppt | Range
Average | ND | ND | ND - 3.3
ND | ND | ND | ND | ND | | | | Perfluorohexanoic Acid (PFHxA) | ppt | Range
Average | ND | | | Perfluoroundecanoic acid (PFUnA) | ppt | Range
Average | ND | | | 4,8-dioxa-3H-perfluorononanoate (ADONA) | ppt | Range
Average | ND | | | F-53B Major (11Cl-PF3OUdS) | ppt | Range
Average | ND | | | F-53B Minor (9CI-PF3ONS) | ppt | Range
Average | ND | | | GenX (HFPO-DA) | ppt | Range
Average | ND | | | Perfluoroalkyl and Polyfluoroalkyl Substances | (PFAS) Ana | lyzed by EPA | Method 537 | .1 Only | | | | | | | | | Perfluorotetradecanoic acid (PFTA) | ppt | Range
Average | ND | | | Perfluorotridecanoic acid (PFTrDA) | ppt | Range
Average | ND Industrial chemical factory discharges; runoff/leaching from | | | N-ethyl Perfluorooctanesulfonamidoacetic acid | ppt | Range
Average | ND landfills; used in fire-retarding foams and various industrial processes | | | N-methyl Perfluorooctanesulfonamidoacetic acid | ppt | Range
Average | ND 1 | | | Perfluoroalkyl and Polyfluoroalkyl Substances | (PFAS) And | | Method 533 | Only | | | | | | | | | 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | ppt | Range
Average | ND | | | 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | ppt | Range
Average | ND Industrial chemical factory discharges; runoff/leaching from | | | 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | ppt | Range
Average | ND landfills; used in fire-retarding foams and various industrial processes | | | Perfluoro-3-methoxypropanoic acid (PFMPA) | ppt | Range
Average | ND | | | Perfluoro-4-methoxybutanoic acid (PFMBA) | ppt | Range
Average | ND | | | | | | | | ; | | | | | | |--|-----------
------------------|------------------------|--------------|-------------|-----------------|--------------|-------------|--------------------|---| | Parameter | Units | Range
Average | Diamond
Valley Lake | Lake Skinner | Lake Havasu | Lake
Mathews | Castaic Lake | Lake Perris | Silverwood
Lake | Major Sources in Drinking Water | | Perfluorobutanoic acid (PFBA) | ppt | Range
Average | ND | | Perfluoroheptanesulfonic acid (PFHpS) | ppt | Range
Average | ND | | Perfluoropentanesulfonic acid (PFPeS) | ppt | Range
Average | ND Industrial chemical factory discharges; runoff/leaching from landfills; used in fire-retarding foams and various industrial | | Perfluoropentanoic acid (PFPeA) | ppt | Range
Average | ND processes | | Nonafluoro-3,6-dioxaheptanoic acid (NFDHA) | ppt | Range
Average | ND | | Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA | ppt | Range
Average | ND | | Miscellaneous | | | | | | | | | | | | На | pH Units | Range | 7.6 - 8.2 | 8 - 8.4 | 8.0 | 8.1 - 8.2 | 7.5 - 7.8 | 7.7 - 7.9 | 7.7 - 7.9 | Not applicable | | Pr. 1 | pri onito | Average | 7.9 | 8.2 | 5.0 | 8.1 | 7.7 | 7.8 | 7.8 | • | | Radon (c) | pCi/L | Range
Average | ND | ND | ND | ND - 130
ND | ND | ND | I NII) | Gas produced by the decay of naturally-occurring uranium in soil and water | | Total Organic Carbon (TOC) | ppm | Range | 2.8 - 3.0 | 3.3 - 3.4 | 3.3 - 3.4 | 3.0 - 4.2 | 3.0 - 3.1 | 3.9 - 4.0 | 2.8 - 4.4 | Various natural and man-made sources; TOC is a precursor | | = : / | | Average | 2.9 | 3.3 | 3.3 | 3.6 | 3.1 | 4.0 | 3.6 | for the formation of disinfection byproducts | ### **DEFINITION OF TERMS AND FOOTNOTES** ### **Definition of Terms** | Average | Arithmetic mean | pCi/L | picoCuries per Liter | |-------------------|--|-------|--| | CaCO ₃ | Calcium Carbonate | PHG | Public Health Goal | | CCRDL | Consumer Confidence Report Detection Level | ppb | parts per billion or micrograms per liter (µg/L) | | DLR | Detection Limit for Purposes of Reporting | ppm | parts per million or milligrams per liter (mg/L) | | MCL | Maximum Contaminant Level | ppq | parts per quadrillion or picograms per liter (pg/L) | | MFL | Million Fibers per Liter | ppt | parts per trillion or nanograms per liter (ng/L) | | MPN | Most Probable Number | Range | Minimum and maximum values; range and average values | | NA | Not Applicable | | are the same if a single value is reported for samples collected | | ND | Not Detected at or above DLR or RL | | once or twice annually | | NTU | Nephelometric Turbidity Units | TON | Threshold Odor Number | | PWS ID | Public Water System Identification | μS/cm | microSiemen per centimeter; or micromho per centimeter (μ mho/cm) | | | | | | - (a) Samples collected in 2024 and reported once every three-year compliance cycle until the next required triennial monitoring in 2027. - (b) Samples collected in 2020 for the required 9-year monitoring cycle (2020-2028). - (c) Samples collected quarterly for gross beta particle activity, and annually for tritium and strontium-90. Gross alpha particle activity, radium, and uranium samples collected quarterly in 2023 for the required triennial monitoring (2023-2025). Radon monitored voluntarily with the triennial radionuclides. - (d) Aesthetic parameters under the State Secondary Standards apply to water supplied to the public by community water systems; annual monitoring is required for approved surface water sources or distribution system entry points for treated water. - (e) Jensen Treatment Plant influent is the compliance monitoring location that represents Castaic Lake source water. See Treatment Plant Influent table for results. - (f) Average of results from two analytical methods. ^{*}As a wholesale water system, Metropolitan provides its member agencies with relevant source water information and monitoring results that they may need for their annual water quality report. Metropolitan compliance with state or federal regulations is determined at the treatment plant effluent locations and/or distribution system, or plant influent per frequency stipulated in Metropolitan's State-approved monitoring plan. MCLs, PHGs, and state DLRs/CCRDLs are included in the Treatment Plant Effluent Report. Data above Metropolitan's laboratory Reporting Limit (RL) but below the State DLR or CCRDL are reported as ND in this report.