PUBLISHED JULY 2020

Este informe contiene información muy importante sobre su agua potable. Para mas información ó traducción, favor de contactar a Sra. Jandy Macias al (626) 338-7301.

Committed to a Safe, Reliable, Affordable Water Supply

FIND OUT MORE ABOUT THE DISTRICT AND MEET SOME **OF OUR STAFF THROUGH** SEVERAL INSIGHTFUL VIDEOS.

+ 101 😏

Governing Board of Directors

MARGARITA VARGAS Board President

LENET PACHECO

Board Vice President

JAZMIN LOPEZ Board Member

DAVID L. MUSE **Board Member JAVIER E. VARGAS Board Member**

you can count on us. We have implemented several programs to ensure your water is there when you need it most, including:

> Installation of Emergency Generators

SYSTEM RELIABILITY

We take great pride in knowing

that when you turn on the tap

you have a safe, reliable and

affordable drinking water source.

Reliability means that even during

an emergency or a natural disaster,

- Computerized Control Upgrades
- Treatment System Monitoring 24/7, 365 days/year
- System Redundancy
- Proactive System Maintenance
- After Hours Emergency Service

CAPITAL IMPROVEMENTS

Every five years the District undergoes a thorough evaluation of our water system which helps us to anticipate future water demands, identify aging infrastructure and improve system reliability. This evaluation is the basis for the District's framework for future capital improvement projects. Ongoing projects include:

- Pipeline Replacement Projects
- Reservoir Rehabilitation
- Meter Replacement Program
- Design and Construction of New District Headquarters
- Emergency Fuel Storage
- Additional Storage Capacity **Design and Construction**

MAKING WATER RELIABLE

Valley County Water District is the principle public water utility serving within a 10-square mile community located in the San Gabriel Valley.

12,470 SERVICE CONNECTIONS

MILES OF WATER MAIN PIPELINES

06 RESERVOIRS

BOOSTER

)3 WATER TREATMENT FACILITIES

)4 ACTIVE

testretap

As water service providers, VCWD understands the need to have safe drinking water readily available. Its our mission to exceed water quality standards through testing, monitoring and treatment of our groundwater supply and delivering it to our customers at a reasonable cost.

TAP WATER IS VITAL TO THE HEALTH AND SAFETY OF OUR COMMUNITY. $\checkmark - -$

The Trust the Tap communications campaign officially launched on social media in January 2020.

WATER SAFETY IS OUR TOP PRIORITY

The District regularly tests your drinking water using the U.S. Environmental Protection Agency (USEPA) and California State Water Resources Control Board (SWRCB), Division of Drinking Water-approved methods. Our staff monitors the District's water supply 24 hours a day and uses state-of-the-art treatment processes to remove potential contaminants.

BUILDING TRUST AND CONFIDENCE

Open and honest communication is part of the District's commitment to keeping our customers informed. We do this by using thirdparty laboratories for testing analysis, regular reporting to the USEPA and SWRCB, and providing the community with information about the quality of your drinking water in the yearly Consumer Confidence Report. The District welcomes the public to attend monthly Board meetings and invites the community to regular water education events.

Did vou know?

Flushing the water mains improves water quality by removing sediment that slowly builds up at the bottom of the water main over time. Flushing water is one of the most critical water quality practices carried out by public drinking water systems.

Tap water is necessary for your overall health and hygiene.

Affordable Rate Program

The District offers an Affordable Rate Program to customers who meet certain income requirements. Residential customers may qualify for a discount of \$10.00 off fixed charges per billing period on their water bill. For more information, visit vcwd.org.

HOW YOUR DOLLARS ARE SPENT

The District uses resources as efficiently and effectively as possible, providing the highest level of service to our customers at the lowest possible cost. As a public agency, VCWD can only charge customers for the cost of water served. The District allocates each dollar of revenue from customers as shown here.

CHANGING PERCEPTIONS

Major brands of bottled water are actually sourced from tap water supplies and sold at an average retail cost of \$1.29 per bottle. The same amount of water provided by VCWD costs less than one cent and is available from the convenience of home.

Did you know?

Tap water is held to higher water quality water and it takes three times the amount of water to produce one bottle of water.

THE SOURCE // CONSUMER CONFIDENCE REPORT

57.000

Angeles NATIONAL FOREST

10=

- 🌾 🖬

VCWD.

REGULATING DRINKING WATER QUALITY

Water utilities in California have provided an annual report to their customers since 1991 which summarizes the prior year's water quality and explains important issues regarding their drinking water. In 1996, the United States Congress reauthorized the Safe Drinking Water Act (SDWA), which was originally passed in 1974 and later amended in 1986. The 1996 reauthorization called for the enhancement of nationwide drinking water regulations to include important components such as source water protection and public information. This year's water quality report covers water quality testing from calendar year 2019 and has been prepared in compliance with the consumer right-to-know regulations required by the SDWA 1996 amendments.

The United States Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of Drinking Water (DDW) are the public agencies responsible for drafting and implementing regulations that ensure your tap water is safe to drink. USEPA and DDW establish drinking water standards that limit the amount of contaminants in water provided to the public. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

For information about this report, or your water quality in general, please contact Mr. Tom Mortenson at (626) 962-1915.

potable. Para mas información ó traducción, favor de contactar a Mr. Tom Mortenson al (626) 962-1915.

DRINKING WATER SOURCE ASSESSMENT

In accordance with the federal Safe Drinking Water Act, an assessment of the drinking water sources for the District was completed in December 2002. The purpose of the drinking water source assessment is to promote source water protection by identifying types of activities in the proximity of the drinking water sources which could pose a threat to the water quality.

The assessment concluded that the District's sources are considered most vulnerable to the following activities or facilities associated with contaminants detected in the water supply: gasoline stations, chemical/petroleum processing and storage, automobile repair shops, fleet/truck/bus terminals, food processing, landfills/dumps, leaking underground

Source of Supply

The District's water supply comes from groundwater wells located in the Main San Gabriel Groundwater Basin. However, as a result of historic industrial discharges, several of the District's groundwater wells are contaminated and have been taken out of service. Water treatment facilities have been constructed at the District to clean up groundwater contamination.

Sources of drinking water generally include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

REGULAR TESTING

VCWD regularly tests your drinking water using DDW-approved methods to ensure its safety. Over 100 compounds have been monitored in the District's water supply. Only the detected constituents are reported in the accompanying table. Detected unregulated contaminants of interest are also included. Again in 2019, the water delivered to you by the District met or surpassed all the State and Federal drinking water standards. In June 2020, a notification was sent to our customers indicating a lapse in

sampling requirements. For additional information visit our website. In addition, the Main San Gabriel Basin Watermaster (Watermaster), who manages our groundwater basin, continuously and vigilantly reviews upcoming State and Federal drinking water regulations. Watermaster has been proactive when monitoring unregulated contaminants in the Main San Gabriel Basin to ensure the water supply meets water quality standards.

storage tanks, dry cleaners and metal plating/finishing/ fabricating. In addition, the sources are considered most vulnerable to the following activities or facilities not associated with contaminants detected in the water supply: pesticide/fertilizer/petroleum storage and transfer areas, railroad vards/maintenance/fueling area.

A copy of the complete assessment is available at Valley County Water District at 14521 Ramona Blvd., Baldwin Park, California 91706. You may request a summary of the assessment to be sent to you by contacting Mr. Tom Mortenson at (626) 962-1915.

It is important to note that even a small concentration of certain contaminants can adversely affect a water supply. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

POTENTIAL CONTAMINANTS IN DRINKING WATER

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff. and residential uses.
- Radioactive contaminants, that can be naturally-occurring or can be the result of oil and gas production and mining activities.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gasoline stations, urban stormwater runoff, agricultural application and septic systems.

IMMUNO-COMPROMISED PEOPLE

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

USEPA/Centers for Disease Control (CDC) quidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Measurements

Water is sampled and tested throughout the year. Contaminants are measured in parts per million (ppm), parts per billion (ppb), and parts per trillion (ppt).

ABOUT LEAD IN TAP WATER

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at: https://www. epa.gov/ground-water-and-drinking-water/ basic-information-about-lead-drinking-water.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791), visit USEPA's Drinking Water website at https://www.epa. gov/ground-water-and-drinking-water or visit DDW website at http://www.waterboards. ca.gov/drinking_water/certlic/drinkingwater/ publicwatersystems.shtml.

Definitions

• Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible.

• Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by EPA.

• Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

 Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

• Notification Level (NL): An advisory level which, if exceeded, requires the drinking water system to notify the governing body of the local agency in which users of the drinking water reside (i.e. city council, county board of supervisors).

 Primary Drinking Water Standard: MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

• Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

• Regulatory Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

• Secondary MCLs: They are set to protect the odor, taste, and appearance of drinking water.

2019 Drinking Water Quality Data

CHEMICAL	MCI	PHG	AVERAGE	RANGE OF	MCL	RECEN	T TYPICAL SOURCE OF CONTAMINANT
		(MCLG)	AMOUNT	DETECTION	VIOLATION	TEST YE	AR
	R STANDARI	JS — He	ealth-Relate	ed Standard	S		
RADIOLOGICALS							
Gross Alpha (pCi/L)	15	(O)	<3	ND - 3.6	No	2019	Erosion of natural deposits
Uranium (pCi/L)	20	0.43	1.5	1.1 - 1.9	No	2017	Erosion of natural deposits
INORGANIC CHEMICALS							
Arsenic (ppb)	10	0.004	2.1	2.0 - 2.1	No	2019	Erosion of natural deposits
Barium (ppm)	1	2	0.12	0.11 - 0.13	No	2019	Erosion of natural deposits
Fluoride (ppm) - Naturally Occur	rring 2	1	0.28	0.26 - 0.31	No	2019	Erosion of natural deposits
Nitrate as N (ppm)	10	10	1.2	0.64 - 1.8	No	2019	Leaching from fertilizer use
SECONDARY DRINKING W	ATER STAND	ARDS -	 Aesthetic 	: Standards,	, Not Healt	h-Relat	ed
Chloride (ppm)	500	N/A	23	22 - 24	No	2018	Runoff/leaching from natural deposits
Odor (threshold odor number)	3	N/A	1	1	No	2018	Naturally-occuring organic materials
Specific Conductance (µmho/	cm) 1,600	N/A	430	390 - 470	No	2018	Substances that form ions in water
Sulfate (ppm)	500	N/A	27	23 - 31	No	2018	Runoff/leaching from natural deposits
Total Dissolved Solids (ppm)	1,000	N/A	220	200 - 240	No	2019	Runoff/leaching from natural deposits
UNREGULATED CHEMICAL	_S OF INTER	EST					
Alkalinity as CaCO3 (ppm)	NR	N/A	160	140 - 170	N/A	2018	Runoff/leaching from natural deposits
Calcium (ppm)	NR	N/A	53	45 - 60	N/A	2018	Runoff/leaching from natural deposits
Hardness as CaCO3 (ppm)	NR	N/A	180	150 - 200	N/A	2018	Runoff/leaching from natural deposits
Grains of Hardness (gpg)	NR	N/A	11	8.8 - 12	N/A	2018	Runoff/leaching from natural deposits
Magnesium (ppm)	NR	N/A	10	8.8 - 12	N/A	2018	Runoff/leaching from natural deposits
pH (pH Units)	NR	N/A	7.8	7.7 - 7.9	N/A	2018	Hydrogen ion concentration
Potassium (ppm)	NR	N/A	3.4	3.0 - 3.6	N/A	2018	Runoff/leaching from natural deposits
Sodium (ppm)	NR	N/A	14	12 - 16	N/A	2018	Runoff/leaching from natural deposits
UNREGULATED CHEMICAL	_S REQUIRIN	IG MON	ITORING				
Bromide (ppb)	NR	N/A	88	75 - 98	N/A	2019	Industrial Discharge
Chlorate (ppb)	NL = 800	N/A	65	55 - 80	N/A	2015	Byproduct of drinking water chlorination; industrial processes
Chromium, Hexavalent (ppb)	NR	0.02	0.58	0.31 - 1.1	N/A	2015	Runoff/leaching from natural deposits; industrial discharge
Chromium, Total (ppb)*	50	(100)	0.53	0.31 - 0.97	N/A	2015	Discharge from steel and pulp mills; natural deposits erosion
Manganese (ppb)**	SMCI = 50	Ν/Δ	04	ND - 24	No	2019	Frosion of natural deposits

MCL = maximum contaminant level; MCLG = maximum contaminant level goal; N/A = not applicable; ND = not detected; NR = not regulated; PHG = public health goal; NL = Notification Level; gpg = grains per gallon; ppb = parts per billion or micrograms per liter; ppm = parts per million or milligrams per liter; NTU = Nephelometric Turbidity Units; SMCL = secondary MCL; µmho/cm = micromhos per centimeter; < = average is less than the reporting limit; pCi/l = picoCuries per liter

CHEMICAL	MCL (PHG MCLG)	AVERAGE AMOUNT	RANGE OF DETECTION	MCL VIOLATION	RECEN TEST YE	NT TYPICAL SOURCE OF CONTAMINANT		
UNREGULATED CHEMICALS		G MONIT	ORING						
Molybdenum, Total (ppb)	NR	N/A	1.8	1.3 - 2.6	N/A	2015	Runoff/leaching from natural deposits		
Strontium, Total (ppb)	NR	N/A	470	440 - 510	N/A	2015	Runoff/leaching from natural deposits		
Total Organic Carbon (ppm)	NR	N/A	0.17	ND - 0.64	N/A	2019	Various natural and man-made sources		
Vanadium, Total (ppb)	NL = 50	N/A	2.2	1.6 - 3.3	N/A	2015	Runoff/leaching from natural deposits		
CHEMICAL ACTION LEVEL (AL)	PHG	90TH PERCENTII	SITE E E NUM	EXCEEDING AL/ IBER OF SITES	AL VIOLATI	NC	TYPICAL SOURCE OF CONTAMINANT		
LEAD AND COPPER CONCE	NTRATIONS	AT RES	IDENTIAL	_ TAPS					
Copper (ppm) 1.3	0.3 0.15			0/32		Со	prrosion of household plumbing		
Lead (ppb) 15	0.2	0.2 ND		1/32		Со	prrosion of household plumbing		
At least thirty residences are tested every three years for lead and copper at-the-tap. The most recent set of samples (32 residences) was collected in 2017. Copper was detected in 26 samples; none exceeded the regulatory action level (AL). Lead was detected in 2 samples; 1 sample exceeded the regulatory AL. The AL is the concentration of lead or copper which if exceeded in more than ten percent of the samples tested, triggers treatment or other requirements that a water system must follow. In 2019, one school submitted a request to be sampled for lead.									
CHEMICAL	MCL (MRDL)	/MRDLG)	AVERAG	E RANGE OI DETECTIO	F MCL N VIOLATI	ON	TYPICAL SOURCE OF CONTAMINANT		
DISTRIBUTION SVSTEM WAT		V							
Total Trihalomethanes (ppb)**	80		3.5	ND - 4.1	No	By	product of chlorine disinfection		
Total Trihalomethanes (ppb)** Haloacetic Acids (ppb)**	80 60		3.5 0.28	ND - 4.1 ND	No	By By	product of chlorine disinfection product of chlorine disinfection		
Total Trihalomethanes (ppb)** Haloacetic Acids (ppb)** Chlorine Residual (ppm)**	80 60 (4 / 4	4)	3.5 0.28 0.67	ND - 4.1 ND 0.23 - 0.9	No No 19 No	By By Dr	product of chlorine disinfection product of chlorine disinfection inking water disinfectant		
Total Trihalomethanes (ppb)** Haloacetic Acids (ppb)** Chlorine Residual (ppm)** CHEMICAL	80 60 (4 / 4 NL	4) PHG (MCLC	3.5 0.28 0.67	ND - 4.1 ND 0.23 - 0.9 RAGE RANGE	No No 9 No E OF RE TION TES	By Dr CENT TYEAR	rproduct of chlorine disinfection rproduct of chlorine disinfection inking water disinfectant TYPICAL SOURCE OF CONTAMINANT		
Total Trihalomethanes (ppb)** Haloacetic Acids (ppb)** Chlorine Residual (ppm)** CHEMICAL	80 60 (4 / 2 NL	4) Phg (MCLC	3.5 0.28 0.67 AVER	ND - 4.1 ND 0.23 - 0.9 RAGE RANGI DETEC N THE DISTR	No No 9 No E OF RE TION TEST RIBUTION	By Dr CENT TYEAR SYSTE	vproduct of chlorine disinfection vproduct of chlorine disinfection inking water disinfectant TYPICAL SOURCE OF CONTAMINANT M		
Total Trihalomethanes (ppb)** Haloacetic Acids (ppb)** Chlorine Residual (ppm)** CHEMICAL UNREGULATED CHEMICALS Chlorate (ppb)	80 60 (4 / 2 NL 800	4) Phg (MCLC 6 MONIT N/A	3.5 0.28 0.67 AVER ORING IN	ND - 4.1 ND 0.23 - 0.9 RAGE RANGI DETEC N THE DISTR 6 66	No No 9 No E OF RE TION TES RIBUTION	By Dr CENT YEAR SYSTE 015	Aproduct of chlorine disinfection Aproduct of chlorine disinfection Aproduct of chlorine disinfection Aproduct of chlorine disinfection TYPICAL SOURCE OF CONTAMINANT M Byproduct of drinking water chlorination; industrial processes		
Total Trihalomethanes (ppb)** Haloacetic Acids (ppb)** Chlorine Residual (ppm)** CHEMICAL UNREGULATED CHEMICALS Chlorate (ppb) Chromium, Hexavalent (ppb)	80 60 (4 / 2 NL 800 N/A	4) PHG (MCLC 6 MONIT N/A 0.02	3.5 0.28 0.67 AVER ORING IN 60	ND - 4.1 ND 0.23 - 0.9 AGE RANGI DETEC N THE DISTR 6 66 31 0.3	No No P9 No E OF RE TION TEST RIBUTION 5 2 81 2	By Dr CENT TYEAR SYSTE 015 015	Approduct of chlorine disinfection Approduct of chlorine disinfection Approduct of chlorine disinfection Approduct of chlorine disinfection Approduct SOURCE OF CONTAMINANT M Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge		
Total Trihalomethanes (ppb)** Haloacetic Acids (ppb)** Chlorine Residual (ppm)** CHEMICAL UNREGULATED CHEMICALS Chlorate (ppb) Chromium, Hexavalent (ppb) Chromium, Total (ppb)*	80 60 (4 / 2 NL 800 N/A MCL = 50	4) PHG (MCLC 6 MONIT N/A 0.02 (100)	3.5 0.28 0.67 AVER ORING IN 6(2 0.3	ND - 4.1 ND 0.23 - 0.9 AGE RANGI DETEC N THE DISTR 6 66 31 0.3	No 19 No 19 No E OF RE TION TES' RIBUTION 2 31 2 3 2	By Dr CENT TYEAR SYSTE 015 015	Approduct of chlorine disinfection Approduct of chlorine disinfection Approduct of chlorine disinfection Approduct of chlorine disinfectant Approduct SOURCE OF CONTAMINANT M Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion		
Total Trihalomethanes (ppb)** Haloacetic Acids (ppb)** Chlorine Residual (ppm)** CHEMICAL UNREGULATED CHEMICALS Chlorate (ppb) Chromium, Hexavalent (ppb) Chromium, Total (ppb)* Haloacetic acids (HAA5) (ppb)	80 60 (4 / 2 NL REQUIRING 800 N/A MCL = 50 N/A	4) PHG (MCLC 6 MONIT N/A 0.02 (100)	3.5 0.28 0.67 AVER ORING IN 60 2 0.3	ND - 4.1 ND 0.23 - 0.9 AGE RANGI DETEC N THE DISTR 6 66 31 0.3 3 0.3	No 19 No 19 No E OF RE TION TEST RIBUTION 2 3 2 0.78 2	By Dr CENT (YEAR SYSTE 015 015 015 015	Aproduct of chlorine disinfection Aproduct of chlorine disinfection Aproduct of chlorine disinfection Aproduct of chlorine disinfection TYPICAL SOURCE OF CONTAMINANT M Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Byproduct of drinking water disinfection		
Total Trihalomethanes (ppb)** Haloacetic Acids (ppb)** Chlorine Residual (ppm)** CHEMICAL UNREGULATED CHEMICALS Chlorate (ppb) Chromium, Hexavalent (ppb) Chromium, Total (ppb)* Haloacetic acids (HAA5) (ppb) Haloacetic acids (HAA6Br) (ppb)	80 60 (4 / 2 NL 800 N/A MCL = 50 N/A N/A	4) PHG (MCLC 6 MONIT N/A 0.02 (100) (100) N/A N/A	3.5 0.28 0.67 AVER ORING IN 60 2 0.3 2 0.1 1 0.1	ND - 4.1 ND 0.23 - 0.9 AGE RANGI DETEC N THE DISTR 6 66 31 0.3 3 0.3 14 ND - 0	No 19 No 19 No EOF RE TION TES RIBUTION 2 3 2 0.78 2 0.78 2	By Dr CENT TYEAR 015 015 015 015 015 015 019	Approduct of chlorine disinfection Approduct of chlorine disinfection Approduct of chlorine disinfection Approduct of chlorine disinfection M Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Byproduct of drinking water disinfection Byproduct of drinking water disinfection		
Total Trihalomethanes (ppb)** Haloacetic Acids (ppb)** Chlorine Residual (ppm)** CHEMICAL UNREGULATED CHEMICALS Chlorate (ppb) Chromium, Hexavalent (ppb) Chromium, Total (ppb)* Haloacetic acids (HAA5) (ppb) Haloacetic acids (HAA9) (ppb)	80 60 (4 / 2 NL 800 N/A MCL = 50 N/A N/A N/A	4) PHG (MCLC 6 MONIT N/A 0.02 (100) (100) N/A N/A N/A	3.5 0.28 0.67 ORING IN CORING IN CORING IN 6 CORING IN 6 CORIN 6 CORING IN 6 CORING IN 6 CORIN 6 CORING IN 6 CORING IN 6 CORIN 6 CORING IN 6 CORING IN 6 CORIN 6 CORIN CORIN CORIN CORIN CORING IN CORIN CORINO CORING IN CORI	ND - 4.1 ND 0.23 - 0.9 AGE RANG DETEC NTHE DISTR 6 66 31 0.3 3 0.3 14 ND - 1 16 ND - 18 ND -	No 19 No 19 No E OF RE TION TES RIBUTION 2 3 2 0.78 2 1.1 2	By Dr CENT TYEAR 015 015 015 015 019 019 019	Approduct of chlorine disinfection Approduct of chlorine disinfection Approduct of chlorine disinfection Approduct of chlorine disinfection Approduct SOURCE OF CONTAMINANT M Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Byproduct of drinking water disinfection Byproduct of drinking water disinfection Byproduct of drinking water disinfection		
Total Trihalomethanes (ppb)** Haloacetic Acids (ppb)** Chlorine Residual (ppm)** CHEMICAL UNREGULATED CHEMICALS Chlorate (ppb) Chromium, Hexavalent (ppb) Chromium, Total (ppb)* Haloacetic acids (HAA5) (ppb) Haloacetic acids (HAA6Br) (ppb) Molybdenum, Total (ppb)	80 60 (4 / 2 NL 800 N/A MCL = 50 N/A N/A N/A N/A N/A	4) PHG (MCLC 6 MONIT N/A 0.02 (100) (100) N/A N/A N/A	3.5 0.28 0.67 ORING IN ORING IN 0.1 0.1 0.1 0.1	ND - 4.1 ND 0.23 - 0.9 AGE RANGI DETEC N THE DISTR 6 66 31 0.3 3 0.3 14 ND - 0 16 ND - 18 ND - 6 1.6	No 19 No 19 No 19 No E OF TION RE TES' RIBUTION 2 31 2 33 2 0.78 2 1.1 2 5 2	By By Dr CENT (YEAR 015 015 015 019 019 019 019 015	Approduct of chlorine disinfection Approduct of chlorine disinfection Approduct of chlorine disinfection Approduct of chlorine disinfection APPICAL SOURCE OF CONTAMINANT ADD Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Byproduct of drinking water disinfection Byproduct of drinking water disinfection Byproduct of drinking water disinfection Runoff/leaching from natural deposits		
Total Trihalomethanes (ppb)** Haloacetic Acids (ppb)** Chlorine Residual (ppm)** CHEMICAL UNREGULATED CHEMICALS Chlorate (ppb) Chromium, Hexavalent (ppb) Chromium, Total (ppb)* Haloacetic acids (HAA5) (ppb) Haloacetic acids (HAA6Br) (ppb) Haloacetic acids (HAA9) (ppb) Molybdenum, Total (ppb)	80 60 (4 / 2 NL 800 N/A MCL = 50 N/A N/A N/A N/A N/A N/A N/A	4) PHG (MCLC 6 MONIT N/A 0.02 (100) (100) (100) N/A N/A N/A	3.5 0.28 0.67 ORING IN 6(2. 0.3 2. 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	ND - 4.1 ND 0.23 - 0.9 AGE RANGI DETEC N THE DISTR 6 66 31 0.3 3 0.3 14 ND - 0 16 ND - 18 ND - 18 ND - 16 1.6	No 19 No 19 No EOF RE TION TES RIBUTION 2 3 2 0.78 2 1.1 2 5 2 0.78 2 0.11 2 0.73 2 0.73 2 0.73 2 0.73 2 0.73 2 0.73 2 0.73 2	By By Dr CENT TYEAR 015 015 015 019 019 019 015 015	Approduct of chlorine disinfection Approduct of chlorine disinfection Approduct of chlorine disinfection Approduct of chlorine disinfection TYPICAL SOURCE OF CONTAMINANT M Byproduct of drinking water chlorination; industrial processes Runoff/leaching from natural deposits; industrial discharge Discharge from steel and pulp mills; natural deposits erosion Byproduct of drinking water disinfection Byproduct of drinking water disinfection Byproduct of drinking water disinfection Runoff/leaching from natural deposits Runoff/leaching from natural deposits		

CHEMICAL		MCL	PHG (MCLG)	AVERAGE AMOUNT	RANGE OF DETECTION	MCL VIOLATION	RECEN TEST YE	NT TYPICAL SOURCE OF CONTAMINANT	
UNREGULATED CHEM	MICALS F	REQUIRIN	IG MONIT	ORING					
Molybdenum, Total (ppb)	NR	N/A	1.8	1.3 - 2.6	N/A	2015	Runoff/leaching from natural deposits	ĺ
Strontium, Total (ppb)	,	NR	N/A	470	440 - 510	N/A	2015	Runoff/leaching from natural deposits	
Total Organic Carbon (pr	pm)	NR	N/A	0.17	ND - 0.64	N/A	2019	Various natural and man-made sources	
Vanadium, Total (ppb)	Γ	VL = 50	N/A	2.2	1.6 - 3.3	N/A	2015	Runoff/leaching from natural deposits	
CHEMICAL AC	CTION /EL (AL)	PHG	90TH PERCENTI	SITE E LE NUM	EXCEEDING AL	AL VIOLATI	ON	TYPICAL SOURCE OF CONTAMINANT	
LEAD AND COPPER C	CONCEN	TRATION	S AT RES	IDENTIAL	_ TAPS				
Copper (ppm)	1.3	0.3 0.15			0/32	No		rrosion of household plumbing	
Lead (ppb)	15	0.2 ND			1/32		Со	orrosion of household plumbing	
At least thirty residences are Copper was detected in 26 s AL is the concentration of lec system must follow. In 2019,	tested even samples; no ad or coppe one school	ry three year one exceeded er which if exc submitted a	rs for lead a d the regula ceeded in m 1 request to 1	nd copper at tory action le nore than ten be sampled	t-the-tap. The m evel (AL). Lead v n percent of the for lead.	ost recent se vas detected samples test	t of samp in 2 samp ed, trigge	les (32 residences) was collected in 2017. ples; 1 sample exceeded the regulatory AL. The rs treatment or other requirements that a water	
CHEMICAL		MCL (MRD	L/MRDLG)	AVERAG	E RANGE O DETECTIO	F MCL N VIOLATI	ON	TYPICAL SOURCE OF CONTAMINANT	
DISTRIBUTION SYSTE	EM WATE		ΤY						
Total Trihalomethanes (ppb)** 8		8	0 3.5		ND - 4.1	No	Ву	product of chlorine disinfection	
laloacetic Acids (ppb)** 60		0	0.28		ND No		product of chlorine disinfection		
Chlorine Residual (ppm) [*]	**	(4 /	(4)	0.67	0.23 - 0.9	3 - 0.99 No		inking water disinfectant	
CHEMICAL		NL	PHG (MCL0	; G) AVER	AGE RANG	E OF RE TION TES	CENT T YEAR	TYPICAL SOURCE OF CONTAMINANT	
UNREGULATED CHEN	MICALS F	REQUIRIN	IG MONIT		N THE DIST	RIBUTION	SYSTE	Μ	
Chlorate (ppb)		800	N/A	6	6 66	6 2	015	Byproduct of drinking water chlorination; industrial processes	
Chromium, Hexavalent (j	ppb)	N/A	0.02	2 0.3	31 0.3	31 2	015	Runoff/leaching from natural deposits; industrial discharge	
Chromium, Total (ppb)*		MCL = 50	0 (100) 0.	3 0.3	3 2	015	Discharge from steel and pulp mills; natural deposits erosion	
Haloacetic acids (HAA5)	(ppb)	N/A	N/A	0.1	4 ND -	0.78 2	019	Byproduct of drinking water disinfection	
Haloacetic acids (HAA6	Br) (ppb)	N/A	N/A	0.1	6 ND	- 1.1 2	019	Byproduct of drinking water disinfection	
Haloacetic acids (HAA9)	(ppb)	N/A	N/A	0.1	8 ND	- 1.1 2	019	Byproduct of drinking water disinfection	
Molybdenum, Total (ppb)	NI/A	NI/A	16	5 16	5 2	015	Runoff/leaching from natural deposits	
Strontium, Total (ppb)	/	I N/ /~	IN//	1.1		/ _	010	rearient reaching norm nataral acposito	
	/	N/A	N/A	51	0 51	0 2	015	Runoff/leaching from natural deposits	
Vanadium, Total (ppb)	/	N/A 50	N/A N/A	51 . 1.6	0 51 6 1.6	0 2 6 2	015 015	Runoff/leaching from natural deposits Runoff/leaching from natural deposits	

MRDL = Maximum Residual Disinfectant Level; MRDLG = Maximum Residual Disinfectant Level Goal; * Total chromium is regulated with an MCL of 50 ppb but was not detected, based on the detection limit for purposes of reporting of 10 ppb. Total chromium was included as part of the unregulated chemicals requiring monitoring. ** Manganese is regulated with a secondary standard of 50 ppb but was not detected, based on the DLR of 20 ppb. Manganese was included as part of the unregulated constituents requiring monitoring. *** The table shows the highest running annual average for 2019, and the range of the individual results for samples collected in 2019.

Valley County Water District

14521 Ramona Boulevard Baldwin Park, CA 91706

> Valley County Water District Provides a Safe and Reliable Supply of Water to All of Our Customers at a Reasonable Cost, and In An Environmentally Sound Manner

Formed in 1926 as Baldwin Park Water District, Valley County Water District (District) is an independent, special district that provides water services to a portion of the cities of Baldwin Park, Irwindale, West Covina, and Azusa. The District is positioned above a portion of the Main San Gabriel Groundwater Basin, which is its primary source of water.

Today the District serves a population of approximately 57,000 through 12,758 water delivery service connections with water that meets all State and Federal drinking water standards.

BOARD MEETINGS

2nd and 4th Monday at 5:30 PM Valley County Water District Board of Directors Room 14521 Ramona Boulevard, Baldwin Park, California 91706

