AMARILLO MUTUAL WATER COMPANY 2017 WATER QUALITY

OT HE COLOR OF S. 1.7.				AMARILLO MUTUAL GROUNDWATER SOURCES	LO MUTUAL ER SOURCES	MATER COM	AMARILLO MUTUAL WATER COMPANY GROUNDWATER QUALITY UNDWATER SOURCES MOST
S	CONSTITUENT (UNITS)	MCL		Average Level	Range of Detections	RECENT TEST YEAR	TYPICAL SOURCE OF CONTAMINANT
S	PRIMARY DRINKING WATER	STANDA	RDS – H	ealth Related	Standards		
2	INORGANIC CHEMICALS	25	100	<10	ND - 11	2016	Erosion of natural deposits
10 10 38 24.4.8 2017 Runoff and leaching from fertilizer use; leaching from fertiliz	Chromium, Total (µg/i)	2 2	1	0.62	0.54 - 0.66	2016	
Discharge from factories, dry cleaners, and auto shops (me (meg)) 5 1,7 2 ND - 25 2017 Discharge from factories, dry cleaners, and auto shops (me (meg)) 5 1,7 2 ND - 25 2017 Discharge from metal deposits	Nitrate as N (mq/l)	10	10	3.8	2.4 - 4.8	2017	
Discriming from macrones, by pleasins, situ and shery knite.	ORGANIC CHEMICALS					201	in the first fraction de chonen and auto chone (motal dagregage)
CEC ((sg)) 5	Tetrachloroethylene (PCE) (µg/l)	1 01	0.06	4.6	0.93 - 5.1	2017	Discharge from netal degreasing sites and other factories
2010 1.5 (0) -3 ND - 5.37 2015 Erceion of natural depocisis	Trichloroethylene (TCE) (µg/l)	5	1.7	2	ND - 2.3	1107	
201 201 2013 29.9 289.9 2014 Erosion of natural deposits	Gross Alpha (nCill)	15	(0)	\$	ND - 5.37	2015	Erosion of natural deposits
ACTION Per Certificity Properties Pr	Uranium (pCi/l)	20	0.43	9.9	9.8 - 9.9	2012	Erosion of natural deposits
S00	SECONDARY DRINKING WA	TER STAN	NDARDS	- Aesthetic	standards, No	t Health-Rela	rted
3	Chloride (mg/l)	500	NA	21	19 - 22	2016	Erosion of natural deposits
1,000	Odor (Units)	ω	A	1	1	2016	Naturally occurring organic materials
1,000	Specific Conductance (µmho/cm)	1,600	NA.	590	550 - 630	2016	Substances that form ions in water
NA	Sulfate (mg/l)	1000	N N	320	250 - 380	2017	Erosion of natural deposits
UNITS OF INTEREST	Turbidity (NTII)	5	NA S	0.49	ND - 0.97	2016	Soil runoff
NA	UNREGULATED CONSTITUE	NTS OF	NTERES				
NA O.2 7.3 5.9-8.6 2016 Erosion of natural deposits of lead and coposits of leading deposits on the control deposits deposits on th	Alkalinity, Total as CaCO3 (mg/l)	NA	NA	230	210 - 240	2016	Erosion of natural deposits
NA NA 240 220 250 2016 Erosion of natural deposits NA NA 22 20 - 23 2016 Erosion of natural deposits NA NA 22 20 - 23 2016 Erosion of natural deposits NA NA 22 20 - 23 2016 Erosion of natural deposits NA NA 22 20 - 23 2016 Erosion of natural deposits NA NA 22 20 - 23 2016 Erosion of natural deposits NA NA 24 23 - 24 2016 Erosion of natural deposits NA NA 24 23 - 24 2016 Erosion of natural deposits NA NA PCI	Calcium (mg/l)	X	NA	60	55 - 64	2016	discharge from industrial
NA NA 22 20 - 23 2016 Erosion of natural deposits	Chromium, Hexavalent (µg/l) (a)	N N	0.02	240	220 - 250	2016	disciplination of the state of
NA	Magnesium (mg/l)	X S	NA S	22	20 - 23	2016	Erosion of natural deposits
NA NA 24 23 - 24 2016 Erosion of natural deposits	pH (standard units)	NA	NA	8.1	7.7 - 8.5	2016	Erosion of natural deposits
rams per liter allons) Color	Sodium (mg/l)	NA	NA	24	23 - 24	2016	posits
TYPICAL SOURCE MCL = Maximum Contaminant Level nns) MCL = MCL Goal LEAD AND COPPER CONCENTRATIONS AT RESIDENTIAL TAPS ACTION LEVEL (AL) PHG PHG PHG PHG PHG PHG PHG PHG PHG PH	μg/I = parts per billion or microgram	ns per liter		<pre>pmho/cm = micr pCi/l = picoCurie</pre>	romhos per centin e per liter	neter	0
ACTION PHG PHG MRDL NUMBER OF SITES	mg/l = parts per million or milligram	ns per liter		MCL = Maximun MCLG = MCL G	n Contaminant Le	vel	NTU = Nephelometric Turbidity Units PHG = Public Health Goal
ACTION LEVEL PHG PHG PARCENTILE NUMBER OF SITES 1.3 0.3 0.57 0/10 Corrosion of household plumbing 1.5 0.2 NID 0/10 Corrosion of household plumbing 1.5 NID 0	CAROCAL O STOPE			LEAD	AND COPPER	CONCENTE	ATIONS AT RESIDENTIAL TAPS
1.3 0.3 0.57 0/10 Corrosion of household plumbing 1.5 0.2 NID 0/10 Corrosion of household plumbing NECL (MRDL) (MRDLG) LEVEL RANGE OF DETECTIONS (4) (4) 0.93 0.5 - 0.55 Byproduct of drinking water disinfection 1.3 NA 1 1 ND-1 Soil runoff Corrosion of household plumbing Water disinfection Corrosion of household plumbing Corrosion of household plumbi	CONSTITUENT (UNITS)	ACTION LEVEL (AL)	РНС	90th PERCENTILE VALUE	SITES EXCE	EDING AL/ OF SITES	\$553.00130000112001133000
hree years for lead and copper at-the-tap. The most recent set of samples was collected in 2017. None of the sample results excontaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. During 2017, no school DISTRIBUTION SYSTEM WATER QUALITY MCL	Copper (mg/l)	1.3	0.3	0.57	0/1	0	Corrosion of household plumbing
hree years for lead and copper at-the-tap. The most recent set of samples was collected in 2017. None of the sample results excontaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. During 2017, no school DISTRIBUTION SYSTEM WATER QUALITY MCL	Lead (µg/I)	15	0.2		0/1	0	Corrosion of household plumbing
ontaminant which, if exceeded, triggers treatment or other requirements that a water system must louise. During EXTRIBUTION SYSTEM WATER QUALITY MCL	Ten residences are tested every thre	e years for l	ead and co	pper at-the-tap.	The most recent s	set of samples w	of the sample results exc
MCL PHG AVERAGE RANGE OF DETECTIONS	The AL is the concentration of a cont	aminant whi	ich, if exce	eded, triggers trea	atment or other re	UTION SYST	During 2017, no scriool
(4) (4) 0.93 0.5-0.55 3 NA 1 1 1 5 NA <0.1 ND-1	CONSTITUENT (UNITS)	MCL (MRDL)	PHG (MRDLG)	AVERAGE LEVEL	RANGE OF D	ETECTIONS	TYPICAL SOURCE OF CONTAMINANT
80 NA 0.55 0.5-0.55 (4) (4) 0.93 0.5-1.7 3 NA 1 1 1 1 5 NA <0.1 ND-1	DISINFECTION BYPRODUCTS (b)						
(4) (4) 0.93 0.5-1.7 3 NA 1 1 1 5 NA <0.1 ND-1	Total Trihalomethanes (µg/l)	80	NA	0.55	0.5 -	0.55	Byproduct of drinking water disinfection
(4) (4) 0.93 0.5-1.7 3 NA 1 1 1 5 NA <0.1 ND-1	DISINFECTANT RESIDUALS (c)					1	District who disinfection added for treetment
3 NA 1 1 1 5 NA <0.1 ND-1	Chlorine Residual (mg/l)	(4)	(4)	0.93	0.5-	1.7	Drinking water disinfectant added for treatment
(U) 5 NA <0.1 ND-1	AESTHETIC QUALITY (d)						Naturally occurring graanic materials
	Oddi (Olilla)	חת	NA	<0.1	ND	-1	Soil runoff

P.O. BOX 6932

(626) 571-7533

(a) There is currently no MCL for hexavalent chromium. The previous MCL of 10 µg/l was withdrawn on September 11, 2017. (b) Samples were collected in the distribution system once every year. Haloacetic Acids were not detected in 2017.

(c) Highest quarterly running annual average for 2017, and the range of the individual results for samples collected in 2017.

(d) Regulated by secondary drinking water standards. Samples collected monthly for color, odor, and turbidity. Color was not detected in 2017.

AMARILLO MUTUAL WATER COMPANY

2017 CONSUMER CONFIDENCE REPORT

AMARILLO MUTUAL WATER COMPANY CONSUMER CONFIDENCE REPORT

committed to keeping you informed about the quality of your drinking water. This report is the constituents found in your drinking water and describing where your drinking water comes from, how the water quality compares with the regulatory provided to you annually. It includes information INTRODUCTION Amarillo Mutual Water Company (Amarillo) is

For information regarding opportunities to participate in decisions that may affect the quality of your water (board meetings), please contact Mr. Ernest Martinez at (626) 571-7533. your water (board meetings), please contact

WHERE DOES MY DRINKING WATER COME

located in the City of Rosemead. The wells are approximately 3,100 people through 627 service disinfection prior to entering the distribution system.

Amarillo maintains a standby connection with San operated alternately. The system has no storage drinking water supply included water purchased Gabriel Valley Water Company. In 2017, Amarillo's with hypochlorite solution at the well site facilities; water produced from the wells is injected Los Angeles County serving a population of rom San Gabriel Valley Water Company. Amarillo is a small community water system in Amarillo maintains two (2) wells for

WHAT ARE WATER QUALITY STANDARDS?

for contaminants in bottled water that provide the systems. The U.S. Food and Drug Administration Control Board, Division of Drinking Water (DDW) regulations and California law also establish limits contaminants in water provided by public water prescribe regulations that limit the amount of certain drink, the United States Environmental Protection same protection for public health. In order to ensure that tap water is safe (USEPA) and State Water Resources

drinking water. The chart in this report shows the following types of water quality standards: affect consumer health or aesthetic qualities JSEPA and DDW set limits for substances that may Drinking water standards established by of

- in drinking water. Primary MCLs are set Maximum Contaminant Level (MCL): The Secondary MCLs are set to protect the odor, economically and technologically highest level of a contaminant that is allowed taste, and appearance of drinking water. ð the PHGs (or MCLGs) as teasible. as
- Maximum Residual Disinfectant Level allowed in drinking water. There is convincing (MRDL): The highest level of a disinfectant

- contaminants. evidence that addition of a disinfectant is or or
- Primary Drinking Water Standard: MCLs and MRDLs for contaminants that affect health requirements along with their and monitoring water and treatment reporting
- reside (i.e. city council, board of directors, agency in which users of the drinking water system to notify the governing body of the local which, if exceeded, requires the drinking water requirements that a water system must follow. concentration of a contaminant, which if requirements. Notification Level (NL): An advisory exceeded, Regulatory Action triggers treatment or other Level (AL): level

WHAT IS A WATER QUALITY GOAL?

county board of supervisors).

water quality goals for some contaminants. Water includes three types of water quality goals: provide useful guideposts and direction for they are not achievable in practice and are not quality goals are often set at such low levels that management practices. The chart in this report standards, USEPA and DDW have set voluntary addition to mandatory water measurable. Nevertheless, these goals water

- to health. MCLGs are set by USEPA. below which there is no known or expected risk Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water
- to control microbial contaminants. reflect the benefits of the use of disinfectants expected risk to health. MRDLGs do not disinfectant below which there is no known or Maximum Residual Disinfectant Level Goa (MRDLG): The level of a drinking water
- there is no known or expected risk to health. PHGs are set by the California Environmental Public Health Goal (PHG): The level of a contaminant in drinking water below which Protection Agency

WHAT CONTAMINANTS MAY BE PRESENT IN SOURCES OF DRINKING WATER?

travels over the surface of the land or through the ponds, reservoirs, springs and wells. animals or from human activity pick up substances resulting from the presence of and, in some cases, radioactive material, and can ground, it dissolves naturally-occurring minerals and bottled water) include rivers, lakes, streams The sources of drinking water (both tap water As water

Contaminants that may be present in source

livestock operations and wildlife treatment plants, septic systems, agricultural bacteria, that may come from sewage Microbial contaminants, such as viruses and

- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or or domestic wastewater discharges, oil and metals, that can be naturally-occurring gas production, mining or farming. result from urban stormwater runoff, industria
- naturally-occurring or be the result of oil Radioactive contaminants, that can gas production and mining activities from a variety of sources such as agriculture Pesticides and herbicides, that may come urban stormwater runoff, and residential uses be
- are byproducts of industrial processes and synthetic and volatile organic chemicals, Organic chemical contaminants, including gasoline stations, urban stormwater runoff petroleum production, and can also come from agricultural application and septic systems tha

amounts of some contaminants. The presence of Office of Ground Water and Drinking Water website obtained by calling the USEPA's Safe Drinking contaminants and potential health effects can be contaminants does not necessarily indicate that reasonably be expected to contain at least small Water Hotline (1-800-426-4791), visiting USEPA's c/drinkingwater/publicwatersystems.shtml water poses a health risk. More information abou https://www.epa.gov/ground-water-and-drinking-Drinking water, including bottled water, may www.waterboards.ca.gov/drinking_water/cert visiting DDW's website

WHAT IS IN MY DRINKING WATER?

drinking water that have federal and state drinking chart lists all the contaminants detected in your change frequently. Some of our data, although representative, are more than one year old. The average and range of concentrations of representative, are more than one year old. tests drinking water from its wells and distribution professional water system operators and certified year 2017 or from the most recent tests. DDW constituents tested in your drinking water during laboratories to ensure its safety. Amarillo routinely less than once per year because the concentrations allows Amarillo to monitor for some contaminants contaminants. contaminants of interest are also included these contaminants in groundwater do not Your drinking water is tested standards. The chart in this report shows the for bacterial and by chemical the

columns list the most recent test year and the typica next columns list the MCL and PHG or MCLG, as regulations require us to report only those detected source of contaminant found in your drinking water. average concentration and range of concentrations table lists substances detected in your water. The your water. The first column of the water quality Although we test for over 100 substances Following are columns that list the The remaining

To review the quality of your drinking water compare the highest concentration and the MCL for a short duration. If test results show that the Exceeding a primary MCL does not usually must be removed from service. be treated to remove the substance, or the source water continues to exceed the MCL, the water must requires testing the source water more frequently constitute an immediate health threat. Rather, Check for substances greater than the

ARE THERE ANY PRECAUTIONS THE PUBLIC

Safe Drinking Water Hotline (1-800-426-4791). particularly at risk from infections. These people disorders, some elderly, and infants can persons with cancer undergoing chemotherapy population. Immuno-compromised persons such as contaminants in drinking water than the general SHOULD CONSIDER? other microbial contaminants are available from the Control (CDC) guidelines on appropriate means to health care providers. USEPA/Centers for Disease should seek advice about drinking water from their people with HIV/AIDS or other immune system persons who have undergone organ transplants lessen the risk of infection by Cryptosporidium Some people may be more vulnerable

NITRATE IN TAP WATER

caring for an infant, or you are pregnant, you should certain specific enzyme deficiencies. If you are skin. Nitrate levels above 10 mg/l may also affect include shortness of breath and blueness of the with the capacity of the infant's blood to carry ask for advice from your health care provider the ability of the blood to carry oxygen in other oxygen, resulting in a serious illness; symptoms Such nitrate levels in drinking water can interfere Nitrate in drinking water at levels above 10 mg/l is a time because of rainfall or agricultural activity nitrate levels may rise quickly for short periods of Although nitrate in your drinking water never exceeds the MCL of 10 milligrams per liter (mg/l) individuals, such as pregnant women and those with nealth risk for infants of less than six months of age

LEAD IN TAP WATER

materials used in plumbing components. When your drinking water, but cannot control the variety of Amarillo is responsible for providing high quality associated with service lines and home plumbing and young children. Lead in drinking water serious problems, especially for pregnant women minimize the potential for lead exposure by flushing water for drinking or cooking. your tap for 30 seconds to 2 minutes before using water has been sitting for several hours, you can If present, elevated levels of lead can cause from materials and components

Information on lead in drinking water, testing methods, and steps you can take to minimize you may If you are concerned about lead in your water wish to have your water

https://www.epa.gov/leac Water Hotline 9

exposure is

available from the

USEPA

DRINKING WATER SOURCE ASSESSMENT

in the water supply: airports - maintenance/fueling sources for Amarillo was completed in June 2001 at 3404 Burton Avenue, Rosemead, California activities associated with the contaminants detected are considered most vulnerable to the following assessment to be sent to you by contacting Ernest Martinez at (626) 571-7533. 91770. assessment is available at Amarillo's office located way, and railroads. A copy of the complete Freeway/State highways, historic railroad right-of contaminants: activities not associated with any detected considered schools, water supply wells, drinking water transfer housing, medical/dental offices/clinics, veterinary offices hardware/lumber/parts stores, parking lots/malls agriculture drainage, storm drain discharge points petroleum storage and transfer areas, fertilizer terminals, photograph processing/printing, electrical/electronic manufacturing, fleet/truck/bus areas, automobile gasoline stations, dry cleaners Water Act, an assessment of the drinking wate shops, automobile repair shops, golf courses pesticide/herbicide application, automobile body activities/unauthorized dumping, pesticide/fertilizer. olating/finishing/fabricating, he assessment concluded that Amarillo's sources In accordance with the federal Safe Drinking and office buildings/complexes, high You may request a summary of most vulnerable to contaminant apartments/condominiums, food processing. transportation machine The sources are plumes, the corridors following density parks, shops illega

terminals, underground storage tanks, and sewer cleaners, automobile repair shops, gasoline discharge from industry, factories, landfills, dry Groundwater sources are considered vulnerable to San Gabriel Valley Water Company completed its groundwater source assessments in 2002 and new assessments were completed in 2005 and Ernest Martinez at (626) 571-7533. the assessment to be sent to you by contacting Mr stations, high density housing, fleet truck and bus collection systems. You may request a summary of 2008 for new sources added to the system

QUESTIONS?

For more information or questions regarding this report, please contact Mr. Ernest Martinez at (626) 571-7533.

importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien. Este informe contiene información muy

		2	GROUNDWATER SOURCES	ER SOURCES	MOST	OUNDWATER SOURCES MOST
CONSTITUENT (UNITS)	MCL	(MCLG)	(MCLG) Average Level	Range of Detections	RECENT TEST YEAR	TYPICAL SOURCE OF CONTAMINANT
DRIMARY DRINKING WATER STANDARDS - Health Related Standards	STANDA	ARDS - I	Jealth Related	Standards		
INORGANIC CHEMICALS	STANDA	XUU -	Tealth Kelated	Stationards		
Aluminum (mg/l)	_	0.6	0.018	ND - 0.11	2017	Erosion of natural deposits
Arsenic (µg/l)	10	0.004	0.35	ND - 2.1	2017	Erosion of natural deposits
Fluoride (mg/l)	2	_	0.57	0.32 - 0.79	2017	Erosion of natural deposits
Nitrate as N (mg/l)	10	10	ω	ND - 5.3	2017	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
RADIOACTIVITY						
Gross Alpha (pCi/l)	15	(0)	4.52	ND - 9.17	2017	Erosion of natural deposits
Uranium (pCi/l)	20	0.43	6.32	1.9 - 10	2017	Erosion of natural deposits
SECONDARY DRINKING WATER STANDARDS	TER STA	NDARDS		Aesthetic Standards, Not Health-Related	Health-Rela	ited
Aluminum (µg/l)	200	600	18	ND - 110	2017	Erosion of natural deposits
Chloride (mg/l)	500	NA	18	4.2 - 29	2017	Erosion of natural deposits
Odor (Threshold Odor Number)	ယ	NA	. 1	1	2017	Naturally occurring organic materials
lron (µg/l)	300	NA	<100	ND - 390	2017	Leaching from natural deposits; industrial wastes
Specific Conductance (µmho/cm)	1,600	AN	530	320 - 720	2017	Substances that form ions in water
Sulfate (mg/l)	500	NA	57	18 - 98	2017	Erosion of natural deposits
Total Dissolved Solids (mg/l)	1,000	NA	380	190 - 460	2017	Erosion of natural deposits
INREGULATED CONSTITUENTS OF INTEREST	NTS OF I	NTERES	3T			
Alkalinity, Total as CaCO3 (mg/l)	NA	NA	190	160 - 230	2017	Erosion of natural deposits
Calcium (mg/l)	NA	NA	61	37 - 82	2017	Erosion of natural deposits
Chlorate (µg/l)	NL=800	NA	260	100 - 460	2015	Byproduct of drinking water chlorination; industrial processes
Chromium, Hexavalent (µg/l) (a)	NA	0.02	3.9	2.4 - 7	2017	Erosion of natural deposits; discharge from industrial waste factories
Hardness as CaCO3 (mg/l)	NA	NA	220	110 - 310	2017	Erosion of natural deposits
Magnesium (mg/l)	NA	NA	17	5.1 - 26	2017	Erosion of natural deposits
Molybdenum (µg/l)	NA	NA	4.9	1.8 - 8.9	2017	Erosion/leaching from natural deposits
pH (standard units)	NA	NA	7.7	7.5 - 7.9	2017	Erosion of natural deposits
Sodium (mg/l)	NA	NA	25	22 - 28	2017	Erosion of natural deposits
Strontium (µg/I)	NA	NA	430	400 - 470	2015	Erosion/leaching from natural deposits
Vanadium (µg/l)	NL=50	NA	3.7	3-4.2	2015	Naturally occurring; industrial waste discharge
μg/l = parts per billion or micrograms per liter (about 1 drop in 14,000 gallons)	s per liter ns)		umho/cm = micromhos per centimeter pCi/l = picoCurie per liter uC1 = Maximum Contaminant Level	mhos per centimo per liter	eter	NA = Not Applicable PHG = Public Health Goal ND = Not Detected <= average is less than the detection limit for numposes of separating
(about 3 drops in 42 gallons)			MCLG = MCL Goal	a		urbidity Units