

Contaminants that may be present in source water include:

- **Microbial contaminants**, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **Inorganic contaminants**, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **Pesticides and herbicides**, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- **Radioactive contaminants**, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5 and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 1 - SAMPLING RESULTS FOR SODIUM AND HARDNESS

Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant
Sodium (mg/L)	(2021)	41	38 - 44	none	none	Salt present in the water and is generally naturally occurring
Hardness (mg/L)	(2021)	353	340 - 380	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

Table 2 - DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD

Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant
Fluoride (mg/L)	(2021)	0.5	0.5 - 0.6	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Hexavalent Chromium (ug/L)	(2014 - 2018)	ND	ND - 1.0		0.02	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Nitrate as N (mg/L)	(2021 - 2022)	6.3	4.8 - 8.8	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (mg/L)	(2021)	7.1	5.9 - 8.0	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	(2015 - 2018)	3.66	1.87 - 5.21	15	(0)	Erosion of natural deposits.
Uranium (pCi/L)	(2015 - 2021)	2.54	1.30 - 3.55	20	0.43	Erosion of natural deposits

2022 Consumer Confidence Report

Water System Name: SPV WATER CO INC

Report Date:

April 2023

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2022.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method.

Your water comes from 5 source(s): WELL 01, WELL 02, WELL 03, WELL 04 and WELL 1A

Opportunities for public participation in decisions that affect drinking water quality: Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings are held every first Saturday of June at 10:00am, location to be announced. For more information regarding public participation opportunities, the Consumer Confidence Report, or any other questions relating to your drinking water; call Culver Computer Bookkeeping Services at (661) 775 - 4844

For more information about this report, or any questions relating to your drinking water, please call (661) 775 - 4844 and ask for Culver Computer Bookkeeping Services.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

NTU: Nephelometric Turbidity Units

umhos/cm: micro mhos per centimeter

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Table 3 - DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD

Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant
Chloride (mg/L)	(2021)	73	63 - 85	500	n/a	Runoff/leaching from natural deposits; seawater influence
Color (Units)	(2021)	4	ND - 12	15	n/a	Naturally-occurring organic materials
Iron (ug/L)	(2021 - 2022)	220	ND - 750	300	n/a	Leaching from natural deposits; Industrial wastes
Specific Conductance (umhos/cm)	(2021)	868	823 - 901	1600	n/a	Substances that form ions when in water; seawater influence
Sulfate (mg/L)	(2021)	91.2	88.5 - 93.9	500	n/a	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (mg/L)	(2021)	540	520 - 560	1000	n/a	Runoff/leaching from natural deposits
Turbidity (NTU)	(2021)	ND	ND - 0.2	5	n/a	Soil runoff
Zinc (mg/L)	(2021)	ND	ND - 0.06	5	n/a	Runoff/leaching from natural deposits

Table 4 - DETECTION OF UNREGULATED CONTAMINANTS

Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant
Boron (mg/L)	(2021)	0.1	n/a	1	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.

Table 5 - ADDITIONAL DETECTIONS

Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant
Calcium (mg/L)	(2021)	88	84 - 93	n/a	n/a
Magnesium (mg/L)	(2021)	33	31 - 36	n/a	n/a
pH (units)	(2021)	7.7	7.5 - 7.8	n/a	n/a
Alkalinity (mg/L)	(2021)	230	220 - 240	n/a	n/a
Aggressiveness Index	(2021)	12.4	12.2 - 12.5	n/a	n/a
Langelier Index	(2021)	0.5	0.3 - 0.6	n/a	n/a

Table 6 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE

Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant
Chlorine (mg/L)	(2018)	0.51	n/a	4.0	4.0	No	Drinking water disinfectant added for treatment.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *SPV Water Company* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/lead>.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL,MRDL,AL,TT, OR MONITORING AND REPORTING REQUIREMENT				
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
Iron				Iron was found at levels that exceed the secondary MCL. The Iron MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.

About your Nitrate as N: Nitrate above 5 mg/L as nitrogen (50 percent of the MCL), but below 10 mg/L as nitrogen (the MCL); Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

2022 Consumer Confidence Report

Drinking Water Assessment Information

Acquiring Information

A copy of the complete assessment may be viewed at:

Los Angeles County Environmental Health
5050 Commerce Place
Baldwin Park, CA 91706

You may request a summary of the assessment be sent to you by contacting:

Russ Johnson
Chief Environmental Health Specialist
(626) 430-5380
(626) 813-3016 (fax)

SPV Water Company
Analytical Results By FGL - 2022

SAMPLING RESULTS FOR SODIUM AND HARDNESS									
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Sodium		mg/L		none	none			41	38 - 44
WELL 01	SP 2100545-1	mg/L				2021-01-13	39		
WELL 02	SP 2100788-1	mg/L				2021-01-20	44		
WELL 04	SP 2100546-1	mg/L				2021-01-13	38		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	43		
Hardness		mg/L		none	none			353	340 - 380
WELL 01	SP 2100545-1	mg/L				2021-01-13	347		
WELL 02	SP 2100788-1	mg/L				2021-01-20	345		
WELL 04	SP 2100546-1	mg/L				2021-01-13	340		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	380		

PRIMARY DRINKING WATER STANDARDS (PDWS)									
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Fluoride		mg/L		2	1			0.5	0.5 - 0.6
WELL 01	SP 2100545-1	mg/L				2021-01-13	0.5		
WELL 02	SP 2100788-1	mg/L				2021-01-20	0.6		
WELL 04	SP 2100546-1	mg/L				2021-01-13	0.5		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	0.5		
Hexavalent Chromium		ug/L			0.02			ND	ND - 1.0
WELL 01	SP 1800714-1	ug/L				2018-01-17	ND		
WELL 02	SP 1414877-2	ug/L				2014-12-22	ND		
WELL 04	SP 1414877-4	ug/L				2014-12-22	1.0		
WELL 1A	SP 1414877-3	ug/L				2014-12-22	1.0		
Nitrate as N		mg/L		10	10			6.3	4.8 - 8.8
WELL 01	SP 2100545-1	mg/L				2021-01-13	8.0		
WELL 02	SP 2216430-1	mg/L				2022-10-12	4.8		
WELL 02	SP 2211417-1	mg/L				2022-07-13	5.2		
WELL 02	SP 2206059-1	mg/L				2022-04-13	5.5		
WELL 02	SP 2200595-1	mg/L				2022-01-12	5.7		
WELL 03	SP 2206055-1	mg/L				2022-04-13	7.9		
WELL 04	SP 2216429-1	mg/L				2022-10-12	5.4		
WELL 04	SP 2211415-1	mg/L				2022-07-13	5.5		
WELL 04	SP 2206058-1	mg/L				2022-04-13	5.8		
WELL 04	SP 2200594-1	mg/L				2022-01-12	5.9		
WELL 1A	SP 2216426-1	mg/L				2022-10-12	6.7		
WELL 1A	SP 2211421-1	mg/L				2022-07-13	8.8		
Nitrate + Nitrite as N		mg/L		10	10			7.1	5.9 - 8.0
WELL 01	SP 2100545-1	mg/L				2021-01-13	8.0		
WELL 02	SP 2100788-1	mg/L				2021-01-20	5.9		
WELL 04	SP 2100546-1	mg/L				2021-01-13	6.5		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	7.9		
Gross Alpha		pCi/L		15	(0)			3.66	1.87 - 5.21
WELL 01	SP 1800714-1	pCi/L				2018-01-17	1.94		
WELL 02	SP 1503813-1	pCi/L				2015-04-08	5.10		
WELL 02	SP 1503813-1	pCi/L				2015-04-08	5.10		
WELL 02	SP 1500498-1	pCi/L				2015-01-14	4.58		
WELL 02	SP 1500498-1	pCi/L				2015-01-14	4.58		
WELL 04	SP 1503812-1	pCi/L				2015-04-08	3.86		
WELL 04	SP 1503812-1	pCi/L				2015-04-08	3.86		
WELL 04	SP 1500497-1	pCi/L				2015-01-14	2.21		
WELL 04	SP 1500497-1	pCi/L				2015-01-14	2.21		
WELL 1A	SP 1503815-1	pCi/L				2015-04-08	1.87		

WELL 1A	SP 1503815-1	pCi/L			2015-04-08	1.87		
WELL 1A	SP 1500501-1	pCi/L			2015-01-14	5.21		
WELL 1A	SP 1500501-1	pCi/L			2015-01-14	5.21		
Uranium		pCi/L	20	0.43			2.54	1.30 - 3.55
WELL 01	SP 1809073-1	pCi/L			2018-07-11	1.30		
WELL 02	SP 2105007-1	pCi/L			2021-04-14	3.55		
WELL 04	SP 1503812-1	pCi/L			2015-04-08	3.32		
WELL 04	SP 1503812-1	pCi/L			2015-04-08	3.32		
WELL 04	SP 1500497-1	pCi/L			2015-01-14	2.36		
WELL 04	SP 1500497-1	pCi/L			2015-01-14	2.36		
WELL 1A	SP 1503815-1	pCi/L			2015-04-08	2.34		
WELL 1A	SP 1503815-1	pCi/L			2015-04-08	2.34		
WELL 1A	SP 1500501-1	pCi/L			2015-01-14	2.27		
WELL 1A	SP 1500501-1	pCi/L			2015-01-14	2.27		

SECONDARY DRINKING WATER STANDARDS (SDWS)

	Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Chloride	mg/L		500	n/a			73	63 - 85
WELL 01	SP 2100545-1	mg/L			2021-01-13	81		
WELL 02	SP 2100788-1	mg/L			2021-01-20	64		
WELL 04	SP 2100546-1	mg/L			2021-01-13	63		
WELL 1A	SP 2100548-1	mg/L			2021-01-13	85		
Color	Units		15	n/a			4	ND - 12
WELL 01	SP 2100545-1	Units			2021-01-13	ND		
WELL 02	SP 2100788-1	Units			2021-01-20	12		
WELL 04	SP 2100546-1	Units			2021-01-13	5		
WELL 1A	SP 2100548-1	Units			2021-01-13	ND		
Iron	ug/L		300	n/a			220	ND - 750
WELL 01	SP 2100545-1	ug/L			2021-01-13	ND		
WELL 02	SP 2216430-1	ug/L			2022-10-12	750		
WELL 02	SP 2211417-1	ug/L			2022-07-13	680		
WELL 02	SP 2206059-1	ug/L			2022-04-13	ND		
WELL 02	SP 2200595-1	ug/L			2022-01-12	110		
WELL 04	SP 2100546-1	ug/L			2021-01-13	ND		
WELL 1A	SP 2100548-1	ug/L			2021-01-13	ND		
Specific Conductance	umhos/cm		1600	n/a			868	823 - 901
WELL 01	SP 2100545-1	umhos/cm			2021-01-13	896		
WELL 02	SP 2100788-1	umhos/cm			2021-01-20	852		
WELL 04	SP 2100546-1	umhos/cm			2021-01-13	823		
WELL 1A	SP 2100548-1	umhos/cm			2021-01-13	901		
Sulfate	mg/L		500	n/a			91.2	88.5 - 93.9
WELL 01	SP 2100545-1	mg/L			2021-01-13	89.4		
WELL 02	SP 2100788-1	mg/L			2021-01-20	93.9		
WELL 04	SP 2100546-1	mg/L			2021-01-13	93.0		
WELL 1A	SP 2100548-1	mg/L			2021-01-13	88.5		
Total Dissolved Solids	mg/L		1000	n/a			540	520 - 560
WELL 01	SP 2100545-1	mg/L			2021-01-13	550		
WELL 02	SP 2100788-1	mg/L			2021-01-20	520		
WELL 04	SP 2100546-1	mg/L			2021-01-13	530		
WELL 1A	SP 2100548-1	mg/L			2021-01-13	560		
Turbidity	NTU		5	n/a			ND	ND - 0.2
WELL 01	SP 2100545-1	NTU			2021-01-13	ND		
WELL 02	SP 2100788-1	NTU			2021-01-20	0.2		
WELL 04	SP 2100546-1	NTU			2021-01-13	ND		
WELL 1A	SP 2100548-1	NTU			2021-01-13	ND		
Zinc	mg/L		5	n/a			ND	ND - 0.06
WELL 01	SP 2100545-1	mg/L			2021-01-13	ND		
WELL 02	SP 2100788-1	mg/L			2021-01-20	ND		
WELL 04	SP 2100546-1	mg/L			2021-01-13	ND		

WELL 1A	SP 2100548-1	mg/L			2021-01-13	0.06		
---------	--------------	------	--	--	------------	------	--	--

UNREGULATED CONTAMINANTS

		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Boron		mg/L		NS	n/a			0.1	0.1 - 0.1
WELL 01	SP 2100545-1	mg/L				2021-01-13	0.1		
WELL 02	SP 2100788-1	mg/L				2021-01-20	0.1		
WELL 04	SP 2100546-1	mg/L				2021-01-13	0.1		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	0.1		

ADDITIONAL DETECTIONS

		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Calcium		mg/L			n/a		88		84 - 93
WELL 01	SP 2100545-1	mg/L				2021-01-13	88		
WELL 02	SP 2100788-1	mg/L				2021-01-20	84		
WELL 04	SP 2100546-1	mg/L				2021-01-13	85		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	93		
Magnesium		mg/L			n/a		33		31 - 36
WELL 01	SP 2100545-1	mg/L				2021-01-13	31		
WELL 02	SP 2100788-1	mg/L				2021-01-20	33		
WELL 04	SP 2100546-1	mg/L				2021-01-13	31		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	36		
pH		units			n/a		7.7		7.5 - 7.8
WELL 01	SP 2100545-1	units				2021-01-13	7.7		
WELL 02	SP 2100788-1	units				2021-01-20	7.5		
WELL 04	SP 2100546-1	units				2021-01-13	7.8		
WELL 1A	SP 2100548-1	units				2021-01-13	7.7		
Alkalinity		mg/L			n/a		230		220 - 240
WELL 01	SP 2100545-1	mg/L				2021-01-13	220		
WELL 02	SP 2100788-1	mg/L				2021-01-20	240		
WELL 04	SP 2100546-1	mg/L				2021-01-13	240		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	220		
Aggressiveness Index					n/a		12.4		12.2 - 12.5
WELL 01	SP 2100545-1					2021-01-13	12.4		
WELL 02	SP 2100788-1					2021-01-20	12.2		
WELL 04	SP 2100546-1					2021-01-13	12.5		
WELL 1A	SP 2100548-1					2021-01-13	12.4		
Langelier Index					n/a		0.5		0.3 - 0.6
WELL 01	SP 2100545-1					2021-01-13	0.5		
WELL 02	SP 2100788-1					2021-01-20	0.3		
WELL 04	SP 2100546-1					2021-01-13	0.6		
WELL 1A	SP 2100548-1					2021-01-13	0.5		

DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE

SPV Water Company
CCR Login Linkage - 2022

FGL Code	Lab ID	Date Sampled	Method	Description	Property
34835 Caprock R	SP 1817290-1	2018-12-27		34835 Caprock Rd.	Routine Water Quality
	SP 2200593-1	2022-01-12	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2202229-1	2022-02-09	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2203736-1	2022-03-09	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2206057-1	2022-04-13	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2207928-1	2022-05-11	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2209655-1	2022-06-08	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2211419-1	2022-07-13	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2212920-1	2022-08-10	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2214747-1	2022-09-14	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2216427-1	2022-10-12	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2217975-1	2022-11-10	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2219433-1	2022-12-07	Coliform	34835 Caprock Rd.	Routine Water Quality
WELL 01	SP 1800714-1	2018-01-17	Radio Chemistry	WELL 01	Well 1 - Title 22
	SP 1800714-1	2018-01-17	Wet Chemistry	WELL 01	Well 1 - Title 22
	SP 1809073-1	2018-07-11	Radio Chemistry	WELL 01	Well 1 - Radio
	SP 2100545-1	2021-01-13	Wet Chemistry	WELL 01	Well 1 - Water Quality
	SP 2100545-1	2021-01-13	General Mineral	WELL 01	Well 1 - Water Quality
	SP 1207731-1	2012-08-01	EPA 524.2	WELL 02	
WELL 02	SP 1400215-1	2014-01-08	EPA 524.2	WELL 02	Well 02 - Water Quality
	SP 1414877-2	2014-12-22	Wet Chemistry	WELL 02	Chrome 6 Monitoring
	SP 1500498-1	2015-01-14	Radio Chemistry	WELL 02	Well 02 - Water Quality
	SP 1503813-1	2015-04-08	Radio Chemistry	WELL 02	Well 02 - Water Quality
	SP 2100788-1	2021-01-20	General Mineral	WELL 02	Well 2 - GM/GP/IOC 2021
	SP 2100788-1	2021-01-20	Wet Chemistry	WELL 02	Well 2 - GM/GP/IOC 2021
	SP 2105007-1	2021-04-14	Metals, Total	WELL 02	Well 02 - Water Quality
	SP 2200595-1	2022-01-12	Wet Chemistry	WELL 02	Well 02 - Water Quality
	SP 2200595-1	2022-01-12	Metals, Total	WELL 02	Well 02 - Water Quality
	SP 2206059-1	2022-04-13	Wet Chemistry	WELL 02	Well 02 - Water Quality
	SP 2206059-1	2022-04-13	Metals, Total	WELL 02	Well 02 - Water Quality
	SP 2211417-1	2022-07-13	Wet Chemistry	WELL 02	Well 02 - Water Quality
	SP 2211417-1	2022-07-13	Metals, Total	WELL 02	Well 02 - Water Quality
	SP 2216430-1	2022-10-12	Wet Chemistry	WELL 02	Well 02 - Water Quality
	SP 2216430-1	2022-10-12	Metals, Total	WELL 02	Well 02 - Water Quality
WELL 03-Well1A	SP 2206055-1	2022-04-13	Wet Chemistry	WELL 03	Well 1A (aka Well 03) - Water Quality
	SP 1200589-1	2012-01-18	EPA 524.2	WELL 04	
WELL 04	SP 1300882-1	2013-01-28	EPA 524.2	WELL 04	Well 04 - Water Quality
	SP 1414877-4	2014-12-22	Wet Chemistry	WELL 04	Chrome 6 Monitoring
	SP 1500497-1	2015-01-14	Radio Chemistry	WELL 04	Well 04 - Water Quality
	SP 1503812-1	2015-04-08	Radio Chemistry	WELL 04	Well 04 - Water Quality
	SP 2100546-1	2021-01-13	General Mineral	WELL 04	Well 04 - Water Quality
	SP 2100546-1	2021-01-13	Wet Chemistry	WELL 04	Well 04 - Water Quality
	SP 2200594-1	2022-01-12	Wet Chemistry	WELL 04	Well 04 - Water Quality
	SP 2206058-1	2022-04-13	Wet Chemistry	WELL 04	Well 04 - Water Quality
	SP 2211415-1	2022-07-13	Wet Chemistry	WELL 04	Well 04 - Water Quality
	SP 2216429-1	2022-10-12	Wet Chemistry	WELL 04	Well 04 - Water Quality
	SP 1001810-1	2010-02-24	EPA 524.2	WELL 1A	
WELL1AakaWell3	SP 1100865-1	2011-01-26	EPA 524.2	WELL 1A	Annual Water Quality
	SP 1200586-1	2012-01-18	EPA 524.2	WELL 1A	
	SP 1300883-1	2013-01-28	EPA 524.2	WELL 1A	Well 1A (aka Well 03) - Water Quality
	SP 1400216-1	2014-01-08	EPA 524.2	WELL 1A	Well 1A (aka Well 03) - Water Quality
	SP 1414877-3	2014-12-22	Wet Chemistry	WELL 1A	Chrome 6 Monitoring
	SP 1500501-1	2015-01-14	Radio Chemistry	WELL 1A	Well 1A (aka Well 03) - Water Quality
	SP 1503815-1	2015-04-08	Radio Chemistry	WELL 1A	Well 1A (aka Well 03) - Water Quality
WELL 03-Well1A	SP 2100548-1	2021-01-13	Wet Chemistry	WELL 1A	Well 1A (aka Well 03) - Water Quality

SP 2100548-1	2021-01-13	General Mineral	WELL 1A	Well 1A (aka Well 03) - Water Quality
SP 2211421-1	2022-07-13	Wet Chemistry	WELL 1A	Well 1A (aka Well 03) - Water Quality
SP 2216426-1	2022-10-12	Wet Chemistry	WELL 1A	Well 1A (aka Well 03) - Water Quality