Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml)

Water System Name:	SPV WATER CO INC
Water System Number:	CA1907028

The water system named above hereby certifies that its Consumer Confidence Report was distributed on

(date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water.

Certified By:	Name:			
	Signature:			
	Title:			
	Phone Number:	()	Date:	

To summarize report delivery used and good-faith efforts taken, please complete the form below by checking all items that apply and fill-in where appropriate:

CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used:

"Good metho	faith" efforts were used to reach non-bill paying customers. Those efforts included the following ds:
	Posted the CCR on the internet at http://
	Mailed the CCR to postal patrons within the service area (attach zip codes used)
	Advertised the availability of the CCR in news media (attach a copy of press release)
	Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of the newspaper and date published)
	Posted the CCR in public places (attach a list of locations)
	Delivery of multiple copies of CCR to single bill addresses serving several persons, such as apartments, businesses, and schools
	Delivery to community organizations (attach a list of organizations)
	Other (attach a list of other methods used)
For sy	stems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site
at the	following address: http://
For in	vestor-owned utilities: Delivered the CCR to the California Public Utilities Commission
	(This form is provided as a convenience and may be used to meet the certification requirement

of section 64483(c), California Code of Regulations.)

2021 Consumer Confidence Report

Water System Name: SPV WATER CO INC

Report Date:

April 2022

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2021.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method.

Your water comes from 5 source(s): WELL 01, WELL 02, WELL 03, WELL 04 and WELL 1A

Opportunities for public participation in decisions that affect drinking water quality: Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings are held every first Saturday of June at 10:00am, location to be announced. For more information regarding public participation opportunities, the Consumer Confidence Report, or any other questions relating to your drinking water; call Culver Computer Bookkeeping Services at (661) 775 - 4844

For more information about this report, or any questions relating to your drinking water, please call (661) 775 - 4844 and ask for Culver Computer Bookkeeping Services.

TERMS U	TERMS USED IN THIS REPORT							
Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.	Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. Treatment Technique (TT): A required process intended to reduce							
Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).	the level of a contaminant in drinking water. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.							
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California	Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.							
Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial	Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.							
contaminants.	ND: not detectable at testing limit							
Maximum Residual Disinfectant Level Goal	mg/L: milligrams per liter or parts per million (ppm)							
(MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of	ug/L: micrograms per liter or parts per billion (ppb)							
disinfectants to control microbial contaminants.	pCi/L: picocuries per liter (a measure of radiation)							
Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along	NTU: Nephelometric Turbidity Units							
with their monitoring and reporting requirements, and water treatment requirements.	umhos/cm: micro mhos per centimeter							

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5 and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

	Table 1 - SAMPLING RESULTS FOR SODIUM AND HARDNESS									
Chemical or Constituent (and reporting units) Sample Date		Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant				
Sodium (mg/L)	(2021)	41	38 - 44	none		Salt present in the water and is generally naturally occurring				
Hardness (mg/L)	(2021)	353	340 - 380	none	nono	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring				

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 2 - I	DETECTION	OF CONTA	MINANTS WI	TH A <u>PRI</u>	MARY DRI	NKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant
Fluoride (mg/L)	(2021)	0.5	0.5 - 0.6	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Hexavalent Chromium (ug/L)	(2014 - 2018)	ND	ND - 1.0		0.02	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Nitrate as N (mg/L)	(2021)	6.8	5.8 - 8.3	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (mg/L)	(2021)	7.1	5.9 - 8.0	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	(2015 - 2018)	3.66	1.87 - 5.21	15	(0)	Erosion of natural deposits.
Uranium (pCi/L)	(2015 - 2021)	2.54	1.30 - 3.55	20	0.43	Erosion of natural deposits

Table 3 - DET	Table 3 - DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant						
Chloride (mg/L)	(2021)	73	63 - 85	500	n/a	Runoff/leaching from natural deposits; seawater influence						
Color (Units)	(2021)	4	ND - 12	15	n/a	Naturally-occurring organic materials						
Iron (ug/L)	(2021)	350	ND - 1630	300	n/a	Leaching from natural deposits; Industrial wastes						
Specific Conductance (umhos/cm)	(2021)	868	823 - 901	1600	n/a	Substances that form ions when in water; seawater influence						
Sulfate (mg/L)	(2021)	91.2	88.5 - 93.9	500	n/a	Runoff/leaching from natural deposits; industrial wastes						
Total Dissolved Solids (mg/L)	(2021)	540	520 - 560	1000	n/a	Runoff/leaching from natural deposits						
Turbidity (NTU)	(2021)	ND	ND - 0.2	5	n/a	Soil runoff						
Zinc (mg/L)	(2021)	ND	ND - 0.06	5	n/a	Runoff/leaching from natural deposits						

Table 4 - DETECTION OF UNREGULATED CONTAMINANTS									
Chemical or Constituent (and reporting units) Sample Date		Average LevelRange ofDetectedDetections		Notification Level	Typical Sources of Contaminant				
Boron (mg/L)	(2021)	0.1	n/a	1	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.				

Table 5 - ADDITIONAL DETECTIONS										
Chemical or Constituent (and reporting units)	Sample Date	e Date Average Level Detected Range of Detections Notifi		Notification Level	Typical Sources of Contaminant					
Calcium (mg/L)	(2021)	88	84 - 93	n/a	n/a					
Magnesium (mg/L)	(2021)	33	31 - 36	n/a	n/a					
pH (units)	(2021)	7.7	7.5 - 7.8	n/a	n/a					
Alkalinity (mg/L)	(2021)	230	220 - 240	n/a	n/a					
Aggressiveness Index	(2021)	12.4	12.2 - 12.5	n/a	n/a					
Langelier Index	(2021)	0.5	0.3 - 0.6	n/a	n/a					

Table 6 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE									
Chemical or Constituent (and reporting units)	Sample Date Average Level Detected		Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant		
Chlorine (mg/L)	(2018)	0.51	n/a	4.0	4.0	No	Drinking water disinfectant added for treatment.		

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *SPV Water Company* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION	VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT									
Violation	Violation Explanation		Actions Taken To Correct the Violation	Health Effects Language						
Iron				Iron was found at levels that exceed the secondary MCL. The Iron MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.						

About your Nitrate as N: Nitrate above 5 mg/L as nitrogen (50 percent of the MCL), but below 10 mg/L as nitrogen (the MCL); Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

2021 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment was conducted for the WELL 02 of the SPV WATER CO INC water system in July, 2002. A source water assessment is not yet completed for the WELL 01A(a.k.a.Well 03) and WELL 04 of the SPV WATER CO INC water system.

WELL 01 - Well # 1 is at Euler Rd Well Head Elevation 2,713
Drilled 5/5/17 Well # 1 is Operational
Slots at 240 Well # 1 is 450 feet deep Orig/12/3/12
5 HP 1/14/20 Well # 1 pump is 420 feet deep 2017
Pump & motor Well # 1 air tube is 420 feet deep 4.5" casing Well # 1 water level is 226 / 236 feet deep 12/3/12 5/5/17

- WELL 02 Well # 1A is at Euler Rd Well Head Elevation 2,713
 Well # 1A is operational. new meter
 7.5 HP Well # 1A is 448 feet deep 11/8/2015
 Pump & motor Well # 1A pump is 385 feet deep 60921892
 7/3/2015 Well # 1A air tube is 385 feet deep 1540536664
 Well # 1A static water level 186.5 feet deep 1/19/2009
- WELL 03 Well # 2 is at Caprock Rd Well Head Elevation 2,762
 Well # 2 is operational. new meter
 10 HP Well # 2 is 750 feet deep 11/8/2015
 Pump & motor Well # 2 pump is 700 feet deep 53487343
 Well # 2 upper air tube is 460 feet deep 1540578656
 Well # 2 lower air tube is 700 feet deep
 Well # 2 static water level 224.24 feet deep 1/19/2009
- WELL 04 Well 03 is a monitoring well on Caprock Road. There is not enough water in well 03 for production to the system. Well 03 is inactive.
- WELL 1A Well # 4 is at Caprock Rd Well Head Elevation 2,762
 Rehabed Well # 4 is oprerational. new meter
 new pump & motor Well # 4 is 500 feet deep 11/8/2015
 in serv 10/2014 Well # 4 pump is 460 feet deep 60921893
 5 HP Well # 4 air tube is 460 feet deep 1540514986
 Pump & motor Well # 4 static water level 224 feet deep 6/9/2010

Acquiring Information

A copy of the complete assessment may be viewed at: Los Angeles County Environmental Health 5050 Commerce Place Baldwin Park, CA 91706

You may request a summary of the assessment be sent to you by contacting: Russ Johnson Chief Environmental Health Specialist (626) 430-5380 (626) 813-3016 (fax)

SPV Water Company Analytical Results By FGL - 2021

SAMPLING RESULTS FOR SODIUM AND HARDNESS										
	Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Sodium		mg/L		none	none			41	38 - 44	
WELL 01	SP 2100545-1	mg/L				2021-01-13	39			
WELL 02	SP 2100788-1	mg/L				2021-01-20	44			
WELL 04	SP 2100546-1	mg/L				2021-01-13	38			
WELL 1A	SP 2100548-1	mg/L				2021-01-13	43			
Hardness		mg/L		none	none			353	340 - 380	
WELL 01	SP 2100545-1	mg/L				2021-01-13	347			
WELL 02	SP 2100788-1	mg/L				2021-01-20	345			
WELL 04	SP 2100546-1	mg/L				2021-01-13	340			
WELL 1A	SP 2100548-1	mg/L				2021-01-13	380			

	PRIMA	RY DRIN	KING WA	TER STANI	DARDS	(PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Fluoride		mg/L		2	1			0.5	0.5 - 0.6
WELL 01	SP 2100545-1	mg/L				2021-01-13	0.5		
WELL 02	SP 2100788-1	mg/L				2021-01-20	0.6		
WELL 04	SP 2100546-1	mg/L				2021-01-13	0.5		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	0.5		
Hexavalent Chromium		ug/L			0.02			ND	ND - 1.0
WELL 01	SP 1800714-1	ug/L				2018-01-17	ND		
WELL 02	SP 1414877-2	ug/L				2014-12-22	ND		
WELL 04	SP 1414877-4	ug/L				2014-12-22	1.0		
WELL 1A	SP 1414877-3	ug/L				2014-12-22	1.0		
Nitrate as N	ł	mg/L		10	10			6.8	5.8 - 8.3
WELL 01	SP 2100545-1	mg/L				2021-01-13	8.0		
WELL 02	SP 2114448-1	mg/L				2021-10-13	5.8		
WELL 02	SP 2109657-1	mg/L				2021-07-16	5.8		
WELL 02	SP 2105007-1	mg/L				2021-04-14	6.3		
WELL 02	SP 2100788-1	mg/L				2021-01-20	5.9		
WELL 03	SP 2114451-1	mg/L				2021-10-13	7.9		
WELL 04	SP 2114449-1	mg/L				2021-10-13	5.9		
WELL 04	SP 2109658-1	mg/L				2021-07-16	6.0		
WELL 04	SP 2105008-1	mg/L				2021-04-14	6.4		
WELL 04	SP 2100546-1	mg/L				2021-01-13	6.5		
WELL 1A	SP 2109659-1	mg/L				2021-07-16	7.8		
WELL 1A	SP 2105010-1	mg/L				2021-04-14	8.3		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	7.9		
Nitrate + Nitrite as N		mg/L		10	10			7.1	5.9 - 8.0
WELL 01	SP 2100545-1	mg/L				2021-01-13	8.0		
WELL 02	SP 2100788-1	mg/L				2021-01-20	5.9		
WELL 04	SP 2100546-1	mg/L				2021-01-13	6.5		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	7.9		
Gross Alpha	•	pCi/L		15	(0)			3.66	1.87 - 5.21
WELL 01	SP 1800714-1	pCi/L				2018-01-17	1.94		
WELL 02	SP 1503813-1	pCi/L				2015-04-08	5.10		
WELL 02	SP 1503813-1	pCi/L				2015-04-08	5.10		
WELL 02	SP 1500498-1	pCi/L				2015-01-14	4.58		
WELL 02	SP 1500498-1	pCi/L				2015-01-14	4.58		
WELL 04	SP 1503812-1	pCi/L				2015-04-08	3.86		
WELL 04	SP 1503812-1	pCi/L				2015-04-08	3.86		
WELL 04	SP 1500497-1	pCi/L				2015-01-14	2.21		
WELL 04	SP 1500497-1	pCi/L				2015-01-14	2.21		1

WELL 1A	SP 1503815-1	pCi/L			2015-04-08	1.87		
WELL 1A	SP 1503815-1	pCi/L			2015-04-08	1.87		
WELL 1A	SP 1500501-1	pCi/L			2015-01-14	5.21		
WELL 1A	SP 1500501-1	pCi/L			2015-01-14	5.21		
Uranium		pCi/L	20	0.43			2.54	1.30 - 3.55
WELL 01	SP 1809073-1	pCi/L			2018-07-11	1.30		
WELL 02	SP 2105007-1	pCi/L			2021-04-14	3.55		
WELL 04	SP 1503812-1	pCi/L			2015-04-08	3.32		
WELL 04	SP 1503812-1	pCi/L			2015-04-08	3.32		
WELL 04	SP 1500497-1	pCi/L			2015-01-14	2.36		
WELL 04	SP 1500497-1	pCi/L			2015-01-14	2.36		
WELL 1A	SP 1503815-1	pCi/L			2015-04-08	2.34		
WELL 1A	SP 1503815-1	pCi/L			2015-04-08	2.34		
WELL 1A	SP 1500501-1	pCi/L			2015-01-14	2.27		
WELL 1A	SP 1500501-1	pCi/L			2015-01-14	2.27		

	SECON	DARY DRINK	UNG WA	TER STANI	DARDS	(SDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Chloride		mg/L		500	n/a			73	63 - 85
WELL 01	SP 2100545-1	mg/L				2021-01-13	81		
WELL 02	SP 2100788-1	mg/L				2021-01-20	64		
WELL 04	SP 2100546-1	mg/L				2021-01-13	63		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	85		
Color	·	Units		15	n/a			4	ND - 12
WELL 01	SP 2100545-1	Units				2021-01-13	ND		
WELL 02	SP 2100788-1	Units				2021-01-20	12		
WELL 04	SP 2100546-1	Units				2021-01-13	5		
WELL 1A	SP 2100548-1	Units				2021-01-13	ND		
Iron		ug/L		300	n/a			350	ND - 1630
WELL 01	SP 2100545-1	ug/L				2021-01-13	ND		
WELL 02	SP 2114448-1	ug/L				2021-10-13	360		
WELL 02	SP 2109657-1	ug/L				2021-07-16	1630		
WELL 02	SP 2105007-1	ug/L				2021-04-14	ND		
WELL 02	SP 2100788-1	ug/L				2021-01-20	460		
WELL 04	SP 2100546-1	ug/L				2021-01-13	ND		
WELL 1A	SP 2100548-1	ug/L				2021-01-13	ND		
Specific Conductance	•	umhos/cm		1600	n/a			868	823 - 901
WELL 01	SP 2100545-1	umhos/cm				2021-01-13	896		
WELL 02	SP 2100788-1	umhos/cm				2021-01-20	852		
WELL 04	SP 2100546-1	umhos/cm				2021-01-13	823		
WELL 1A	SP 2100548-1	umhos/cm				2021-01-13	901		
Sulfate	·	mg/L		500	n/a			91.2	88.5 - 93.9
WELL 01	SP 2100545-1	mg/L				2021-01-13	89.4		
WELL 02	SP 2100788-1	mg/L				2021-01-20	93.9		
WELL 04	SP 2100546-1	mg/L				2021-01-13	93.0		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	88.5		
Total Dissolved Solids		mg/L		1000	n/a			540	520 - 560
WELL 01	SP 2100545-1	mg/L				2021-01-13	550		
WELL 02	SP 2100788-1	mg/L				2021-01-20	520		
WELL 04	SP 2100546-1	mg/L				2021-01-13	530		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	560		
Turbidity	· · · · ·	NTU		5	n/a			ND	ND - 0.2
WELL 01	SP 2100545-1	NTU				2021-01-13	ND		
WELL 02	SP 2100788-1	NTU				2021-01-20	0.2		
WELL 04	SP 2100546-1	NTU				2021-01-13	ND		
WELL 1A	SP 2100548-1	NTU				2021-01-13	ND		
Zinc		mg/L		5	n/a			ND	ND - 0.06
WELL 01	SP 2100545-1	mg/L				2021-01-13	ND		
WELL 02	SP 2100788-1	mg/L				2021-01-20	ND		

WELL 04	SP 2100546-1	mg/L		2021-01-13	ND	
WELL 1A	SP 2100548-1	mg/L		2021-01-13	0.06	

UNREGULATED CONTAMINANTS										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Boron		mg/L		NS	n/a			0.1	0.1 - 0.1	
WELL 01	SP 2100545-1	mg/L				2021-01-13	0.1			
WELL 02	SP 2100788-1	mg/L				2021-01-20	0.1			
WELL 04	SP 2100546-1	mg/L				2021-01-13	0.1			
WELL 1A	SP 2100548-1	mg/L				2021-01-13	0.1			

		ADI	DITIONAL	DETECTIO	NS				
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Calcium		mg/L			n/a			88	84 - 93
WELL 01	SP 2100545-1	mg/L				2021-01-13	88		
WELL 02	SP 2100788-1	mg/L				2021-01-20	84		
WELL 04	SP 2100546-1	mg/L				2021-01-13	85		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	93		
Magnesium		mg/L			n/a			33	31 - 36
WELL 01	SP 2100545-1	mg/L				2021-01-13	31		
WELL 02	SP 2100788-1	mg/L				2021-01-20	33		
WELL 04	SP 2100546-1	mg/L				2021-01-13	31		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	36		
pH		units			n/a			7.7	7.5 - 7.8
WELL 01	SP 2100545-1	units				2021-01-13	7.7		
WELL 02	SP 2100788-1	units				2021-01-20	7.5		
WELL 04	SP 2100546-1	units				2021-01-13	7.8		
WELL 1A	SP 2100548-1	units				2021-01-13	7.7		
Alkalinity	•	mg/L			n/a			230	220 - 240
WELL 01	SP 2100545-1	mg/L				2021-01-13	220		
WELL 02	SP 2100788-1	mg/L				2021-01-20	240		
WELL 04	SP 2100546-1	mg/L				2021-01-13	240		
WELL 1A	SP 2100548-1	mg/L				2021-01-13	220		
Aggressiveness Index	•				n/a			12.4	12.2 - 12.5
WELL 01	SP 2100545-1					2021-01-13	12.4		
WELL 02	SP 2100788-1					2021-01-20	12.2		
WELL 04	SP 2100546-1					2021-01-13	12.5		
WELL 1A	SP 2100548-1					2021-01-13	12.4		
Langelier Index					n/a			0.5	0.3 - 0.6
WELL 01	SP 2100545-1					2021-01-13	0.5		
WELL 02	SP 2100788-1					2021-01-20	0.3		
WELL 04	SP 2100546-1					2021-01-13	0.6		
WELL 1A	SP 2100548-1					2021-01-13	0.5		

DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE									
			MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Chlorine		mg/L		4.0	4.0			0.51	0.51 - 0.51
34835 Caprock Rd.	SP 1817290-1	mg/L				2018-12-27	0.51		
Average 34835 Caprock Rd.								0.51	

SPV Water Company CCR Login Linkage - 2021

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
34835 Caprock R	SP 1817290-1	2018-12-27		34835 Caprock Rd.	Routine Water Quality
	SP 2100544-1	2021-01-13	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2101900-1	2021-02-10	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2103395-1	2021-03-10	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2105009-1	2021-04-14	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2106323-1	2021-05-12	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2107657-1	2021-06-09	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2109443-1	2021-07-14	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2111004-1	2021-08-11	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2112484-1	2021-09-08	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2114450-1	2021-10-13	Coliform	34835 Caprock Rd.	Routine Water Quality
	SP 2116100-1	2021-11-10	Coliform	34835 Caprock Rd.	Routine Water Quality
DBPR-ss01	SP 2117574-1	2021-12-09	Coliform	34835 Caprock Rd.	Routine Water Quality
Well 1	SP 1800714-1	2018-01-17	Wet Chemistry	WELL 01	Well 1 - Title 22
Well 1	SP 1800714-1	2018-01-17	Radio Chemistry	WELL 01	Well 1 - Title 22
WELL 01	SP 1809073-1	2018-07-11	Radio Chemistry	WELL 01	Well 1 - Radio
WELL OI	SP 2100545-1	2021-01-13	Wet Chemistry	WELL 01	Well 1 - Water Quality
	SP 2100545-1	2021-01-13	General Mineral	WELL 01	Well 1 - Water Quality
	SP 1200343-1 SP 1207731-1	2021-01-13	EPA 524.2	WELL 02	Well I - Water Quality
WELL 02	SP 1207751-1 SP 1400215-1	2012-00-01	EPA 524.2	WELL 02	Well 02 - Water Quality
WELL 02	SP 1400215-1 SP 1414877-2	2014-01-08		WELL 02	Chrome 6 Monitoring
			Wet Chemistry		Well 02 - Water Quality
	SP 1500498-1	2015-01-14	Radio Chemistry	WELL 02	
	SP 1503813-1	2015-04-08	Radio Chemistry	WELL 02	Well 02 - Water Quality
	SP 2100788-1	2021-01-20	Wet Chemistry	WELL 02	Well 2 - GM/GP/IOC 2021
	SP 2100788-1	2021-01-20	General Mineral	WELL 02	Well 2 - GM/GP/IOC 2021
	SP 2105007-1	2021-04-14	Wet Chemistry	WELL 02	Well 02 - Water Quality
	SP 2105007-1	2021-04-14	Metals, Total	WELL 02	Well 02 - Water Quality
	SP 2109657-1	2021-07-16	Wet Chemistry	WELL 02	Well 02 - Water Quality
	SP 2109657-1	2021-07-16	Metals, Total	WELL 02	Well 02 - Water Quality
	SP 2114448-1	2021-10-13	Wet Chemistry	WELL 02	Well 02 - Water Quality
	SP 2114448-1	2021-10-13	Metals, Total	WELL 02	Well 02 - Water Quality
WELL 03-Well1A	SP 2114451-1	2021-10-13	Wet Chemistry	WELL 03	Well 1A (aka Well 03) - Water Quality
	SP 1200589-1	2012-01-18	EPA 524.2	WELL 04	
WELL 04	SP 1300882-1	2013-01-28	EPA 524.2	WELL 04	Well 04 - Water Quality
	SP 1414877-4	2014-12-22	Wet Chemistry	WELL 04	Chrome 6 Monitoring
	SP 1500497-1	2015-01-14	Radio Chemistry	WELL 04	Well 04 - Water Quality
	SP 1503812-1	2015-04-08	Radio Chemistry	WELL 04	Well 04 - Water Quality
	SP 2100546-1	2021-01-13	Wet Chemistry	WELL 04	Well 04 - Water Quality
	SP 2100546-1	2021-01-13	General Mineral	WELL 04	Well 04 - Water Quality
	SP 2105008-1	2021-04-14	Wet Chemistry	WELL 04	Well 04 - Water Quality
	SP 2109658-1	2021-07-16	Wet Chemistry	WELL 04	Well 04 - Water Quality
	SP 2114449-1	2021-10-13	Wet Chemistry	WELL 04	Well 04 - Water Quality
	SP 1001810-1	2010-02-24	EPA 524.2	WELL 1A	
WELL1AakaWell3	SP 1100865-1	2011-01-26	EPA 524.2	WELL 1A	Annual Water Quality
	SP 1200586-1	2012-01-18	EPA 524.2	WELL 1A	
	SP 1300883-1	2013-01-28	EPA 524.2	WELL 1A	Well 1A (aka Well 03) - Water Quality
	SP 1400216-1	2014-01-08	EPA 524.2	WELL 1A	Well 1A (aka Well 03) - Water Quality
	SP 1414877-3	2014-12-22	Wet Chemistry	WELL 1A	Chrome 6 Monitoring
	SP 1500501-1	2015-01-14	Radio Chemistry	WELL 1A	Well 1A (aka Well 03) - Water Quality
	SP 1503815-1	2015-04-08	Radio Chemistry	WELL 1A	Well 1A (aka Well 03) - Water Quality
WELL 03-Well1A		2021-01-13	General Mineral	WELL 1A	Well 1A (aka Well 03) - Water Quality
	SP 2100548-1	2021-01-13	Wet Chemistry	WELL 1A	Well 1A (aka Well 03) - Water Quality
	SP 2105010-1	2021-01-13	Wet Chemistry	WELL 1A	Well 1A (aka Well 03) - Water Quality
	SP 2109659-1	2021-07-16	Wet Chemistry	WELL 1A	Well 1A (aka Well 03) - Water Quality
L	51 2103033-1	2021-07-10	not onemistry		Won 1A (uku Wen 05) - Water Quality