2024 Consumer Confidence Report #### **Water System Information** Water System Name: White Fence Farms Mutual Water Co. 3 Report Date: July 1, 2025 Type of Water Source(s) in Use: Purchased Treated Surface Water & Groundwater blended with Purchased Treated Surface Water (began in October 2021) Name and General Location of Source(s): Antelope Valley East Kern Water Agency (AVEK) Connection - Palmdale Well 01A (used- January - May, and October – December 2024) - Palmdale Well 01A and AVEK Connection "Blend" – Palmdale Well 2 -Inactive since March 2017 - Palmdale **Drinking Water Source Assessment Information:** Source Water Assessments were conducted for Wells 01A and 02 of White Fence Farms MWC #3 in August 2001 by the State Water Resources Control Board, Division of Drinking Water. Copies of the complete assessments may be viewed at: State Water Resources Control Board, Division of Drinking Water, 500 North Central Avenue, Suite 500, Glendale, CA 91203. Additional copies are also available, per email request wffmw3@gmail.com The Company plans to update the information contained in the source assessment in the near future. Well 01A (Active Source) – This source is not considered vulnerable to any potentially contaminating activities at this time and not associated with contaminants found in the water. (as of Aug. 2001) Nitrate has been detected to a level as high as 9.4 mg/L, which is above half the MCL of 10 mg/L. There is nothing that could be associated with nitrate around the area, so it could be considered as naturally occurring. Another possible reason is a historic animal feeding operation around the area. This land use is rural, so this may be a strong possibility. Fluoride has been detected at a level of 0.3 mg/L, which is higher than the DLR level of 0.1, but is well below the MCL of 2.0 mg/L. This detection could have come from a possible historic demolition/ construction staging area. Well 02 (Inactive Source)—This source is not considered vulnerable to any potentially contaminating activities at this time that are not associated with contaminants found in the water. (as of Aug 2001) Nitrate has been detected to a level of 13 mg/L which is above the MCL of 10 mg/L. There is nothing that could be associated with nitrate around the area, so it could be considered as naturally occurring. Another possibility is a historic animal feeding operation around the area. This land use is rural so this may be a strong possibility. Di-(e-ethlhexyl) phthalate has been detected at a level of 4 ug/L, which is exactly the value of the MCL. There is nothing around the areas associated with this chemical. There may have been historic hardware/lumber/parts store in the general area that may have contributed to this chemical's detection. In March 2017, Well 2 was inactivated. The well will be destroyed in the future. Time and Place of Regularly Scheduled Board Meetings for Public Participation: 6:00pm Second Wednesday of every month. Meetings are being held Teleconference- Zoom, Meetings allow for Public Participation For More Information, Contact: Brandi Moore (661) 943-6916 ### **About This Report** We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2024, and may include earlier monitoring data. Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse White Fence Farms Mutual Water Co. 3 a (661)943-6916 para asistirlo en español. #### **Terms Used in This Report** | Term | Definition | |--|---| | Level 1 Assessment | A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. | | Level 2 Assessment | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. | | Maximum Contaminant
Level (MCL) | The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. | | Maximum Contaminant
Level Goal (MCLG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). | | Maximum Residual
Disinfectant Level
(MRDL) | The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | Maximum Residual
Disinfectant Level Goal
(MRDLG) | The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | Primary Drinking Water Standards (PDWS) | MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. | | Public Health Goal
(PHG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. | | Regulatory Action Level (AL) | The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. | | Term | Definition | |---|--| | Secondary Drinking
Water Standards
(SDWS) | MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. | | Treatment Technique (TT) | A required process intended to reduce the level of a contaminant in drinking water. | | Variances and
Exemptions | Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions. | | ND | Not detectable at testing limit. | | ppm | parts per million or milligrams per liter (mg/L) | | ppb | parts per billion or micrograms per liter (µg/L) | | ppt | parts per trillion or nanograms per liter (ng/L) | | ppq | parts per quadrillion or picogram per liter (pg/L) | | pCi/L | picocuries per liter (a measure of radiation) | # Sources of Drinking Water and Contaminants that May Be Present in Source Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. ## Regulation of Drinking Water and Bottled Water Quality In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. ## **About Your Drinking Water Quality** #### **Drinking Water Contaminants Detected** Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. Table 1. Sampling Results Showing the Detection of Coliform Bacteria Complete if bacteria are detected. | Microbiological
Contaminants | Highest No.
of
Detections | No. of
Months in
Violation | MCL | MCLG | Typical Source
of Bacteria | |---------------------------------
---------------------------------|----------------------------------|-----|------|-------------------------------| | E. coli | (In the year)
0 | [Enter No.]
0 | | 0 | Human and animal fecal waste | (a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*. Table 1.A. Compliance with Total Coliform MCL between January 1, 2024 and December 31, 2024 (inclusive) | Microbiological
Contaminants | Highest No.
of
Detections | No. of
Months in
Violation | MCL | MCLG | Typical Source
of Bacteria | |-----------------------------------|---------------------------------|----------------------------------|---------------------------|------|--------------------------------------| | Total Coliform
Bacteria | (In a month)
0 | [Enter No.] | 0 positive monthly sample | 0 | Naturally present in the environment | | Fecal Coliform and <i>E. coli</i> | (in the year)
0 | [Enter No.]
0 | 0 | None | Human and animal fecal waste | (a) For systems collecting fewer than 40 samples per month: two or more positively monthly samples is a violation of the total coliform MCL For violation of the total coliform MCL, include potential adverse health effects, and actions taken by water system to address the violation: Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessments to identify problems and to correct any issues that are found. We conducted additional sampling and concluded there was no need for concern. Table 2. Sampling Results Showing the Detection of Lead and Copper Complete if lead or copper is detected in the last sample set. | Lead and
Copper | Sample Date | No. of Samples
Collected | 90 th Percentile
Level Detected | No. Sites
Exceeding AL | AL | PHG | No. of Schools
Requesting
Lead Sampling | Typical Source
of
Contaminant | |--------------------|-------------|-----------------------------|---|---------------------------|-----|-----|---|---| | Lead
(ppb) | 7/23/24 | 10 | 0.0059 | None | 15 | 0.2 | Not
Applicable | Internal corrosion of
household water plumbing
systems; discharges from
industrial manufacturers;
erosion of natural deposits | | Copper (ppm) | 7/23/24 | 10 | 0.78 | None | 1.3 | 0.3 | Not
applicable | Internal corrosion of
household plumbing
systems; erosion of natural
deposits; leaching from
wood preservatives | Table 3. Sampling Results for Sodium and Hardness | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | |---|--|--|--|------|---------------|--| | Sodium (ppm) See attached AVEK 2024 Water Quality Report | See attached
AVEK 2024
Water Quality
Report | See attached
AVEK 2024
Water Quality
Report | See attached
AVEK 2024
Water Quality
Report | None | None | Salt present in the water and is generally naturally occurring | | Well 01A | 12/28/22 | 150 | Not Applicable | | | | | Hardness (ppm) See attached AVEK 2024 Water Quality Report Well 01A | See attached
AVEK 2024
Water Quality
Report
12/28/22 | See attached
AVEK 2024
Water Quality
Report | See attached
AVEK 2024
Water Quality
Report
Not Applicable | None | None | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | |---|--|--|--|------|------|--| |---|--|--|--|------|------|--| Table 4. Detection of Contaminants with a Primary Drinking Water Standard | Chemical or
Constituent
(and
reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source
of
Contaminant | |---|----------------------------|--|---|---------------|--------------------------|---| | Nitrate (ppm) See attached AVEK 2024 Water Quality Report Blend Effluent (Well01A and AVEK) | Jan - May &
Oct-Dec 24 | See attached
AVEK 2024
Water Quality
Report
2.99 | See attached
AVEK 2024
Water Quality
Report
1.74 – 5.33 | 10 | 0.40 | Runoff/leaching from
fertilizers use: from
septic, and sewage
Erosion of natural
deposits. | | Fluoride (ppm) See attached AVEK 2024 Water Quality Report Well 01A | 12/28/22 | See attached
AVEK 2024
Water Quality
Report | See attached
AVEK 2024
Water Quality
Report | 2.0 | 0.10 | Erosion of natural deposits, water additive that promotes strong teeth, discharge from fertilizer and aluminum factories. | | Total TTHM (ppm) See attached AVEK 2024 Water Quality Report WFF3 Distribution System | Mar, Jun,
Sep, & Oct 24 | See attached
AVEK 2024
Water Quality
Report | See attached
AVEK 2024
Water Quality
Report
35.30 – 67.00 | 80 | 1.0 | By product of drinking water disinfection. | | Total HAA5 (ppm) See attached AVEK 2024 Water Quality Report | | See attached
AVEK 2024
Water Quality
Report | See attached
AVEK 2024
Water Quality
Report | 60 | 1.0 | By product of drinking water disinfection. | |---|----------------------------|--|--|----|-----|--| | WFF3 Distribution
System | Mar, Jun,
Sep, & Oct 24 | 14.53 | 9.40 – 20.80 | ¥ | | | Table 5. Detection of Contaminants with a Secondary Drinking Water Standard | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | SMCL | PHG
(MCLG) | Typical Source
of
Contaminant | |---|---------------------------|--|--|------|---------------|---| | Chloride (ppm) See attached AVEK 2024 Water Quality Report | | See attached
AVEK 2024
Water Quality
Report | See attached
AVEK 2024
Water Quality
Report | 500 | 1.0 | Runoff/leaching from natural deposits; industrial wastes. | | Well 01A | 12/28/22 | 110 | Not Applicable | | | | | Sulfate (ppm) | | | | 500 | 0.50 | Runoff/leaching from natural deposits. | | See attached AVEK 2024
Water Quality Report | | See attached
AVEK 2024
Water Quality
Report | See attached
AVEK 2024
Water Quality
Report | | | | | Blend Effluent
(Well01A and AVEK) | Jan - May &
Oct-Dec 24 | 179.64 | 104.6 – 320 | | < | | | Specific
Conductance (ECUS/cm) | | | | 1600 | 2.0 | Substances that form ions when in water, industrial wastes. | | See attached AVEK 2024
Water Quality Report | | See attached
AVEK 2024
Water Quality
Report | See attached
AVEK 2024
Water Quality
Report | | | | | Blend Effluent
(Well01A and AVEK) | Jan - May &
Oct-Dec 24 | 829.48 | 592 - 1275 | | | | | | | | | | | | | | | T | T | | - | | |---|---------------------------|--|--|------|-----|--| | Turbidity (NTU) See attached AVEK 2024 Water Quality Report | | See attached
AVEK 2024
Water Quality
Report | See attached
AVEK 2024
Water Quality
Report | 5 | 1 | Soil Runoff | | Blend Effluent
(Well01A and AVEK) | Jan - May &
Oct-Dec 24 | 0.35 | 0.05 – 0.79 | | | | | Iron (Fe) | | | | | | | | See attached AVEK 2024
Water Quality Report | | See attached
AVEK 2024
Water Quality
Report | See attached
AVEK 2023
Water Quality
Report | 300 | 100 | natural existence
in
underground rock
formations and precipitation
water that infiltrates through | | Blend Effluent
(Well01A and AVEK) | Jan - May &
Oct-Dec 24 | 10.25 | 0.0 - 52 | | | | | Manganese (Mn) | | | | 50 | 20 | Natural source or because of human activity such as | | See attached AVEK 2024
Water Quality Report | | See attached
AVEK 2024
Water Quality
Report | See attached
AVEK 2024
Water Quality
Report | | | mining and industrial discharges | | Blend Effluent
(Well01A and AVEK) | Jan - May &
Oct-Dec 24 | 0.00 | 0.0 - 0.0 | 42 | | | | Total Dissolved
Solids TDS (ppm) | | | | 1000 | 5.0 | Runoff/Leaching from natural deposits; industrial wastes. | | 100% AVEK Water Jan-Jun
See attached AVEK 2024
Water Quality Report | | See attached
AVEK 2024
Water Quality
Report | See attached
AVEK 2024
Water Quality
Report | | | | | Blend Effluent
(Well01A and AVEK) | Jan - May &
Oct-Dec 24 | 491.88 | 332 – 822 | | | | | | 5 | | | |--|---|--|--| Table 6. Detection of Unregulated Contaminants | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | Notification
Level | Health Effects | |---|----------------|--|--|-----------------------|--| | Vanadium (ppm) See attached AVEK 2025 Water Quality Report | | See attached
AVEK 2025
Water Quality
Report | See attached
AVEK 2025
Water Quality
Report | 50 | Vanadium exposures resulted in developmental and reproductive effects in rats. | | Well 01A | 12/28/22 | 0.00 | Not Applicable | | | #### Additional General Information on Drinking Water Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [Enter Water System's Name] is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead. **Special Language for Nitrate:** Infants below the age of six months who drink water containing nitrate of the MCL may quickly become ill and, if untreated, may die because high nitrate levels can interfere with the capacity of the infant's blood to carry oxygen. Symptoms include shortness of breath and blueness of the skin. High nitrate levels may also affect the oxygen-carrying ability of the blood of pregnant women. State Revised Total Coliform Rule (RTCR): This Consumer Confidence Report (CCR) reflects changes in the drinking water regulatory requirements during 2021. These revisions add the requirements of the federal Revised Coliform Rule, effective April 1, 2016, to the existing state Total Coliform Rule. The revised rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E. coli bacteria). The U.S. EPA anticipates greater public health protection as the rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water system that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system. The state Revised Total Coliform Rule became effective July 1, 2021. ## Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement | Violation | Explanation | Duration | Actions Taken to Correct Violation | Health Effects
Language | |-----------|-------------|----------|------------------------------------|----------------------------| | | | | | | ## For Water Systems Providing Groundwater as a Source of Drinking Water Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples | Microbiological
Contaminants
(complete if fecal-
indicator detected) | Total No. of
Detections | Sample
Dates | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of
Contaminant | |---|----------------------------|-----------------|---------------|--------------------------|----------------------------------| | E. coli | (In the year)
0 | | 0 | (0) | Human and animal fecal waste | | Enterococci | (In the year) | | TT | N/A | Human and animal fecal waste | | Coliphage | (In the year)
0 | | П | N/A | Human and animal fecal waste | # Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Violation of a Groundwater TT Special Notice of Fecal Indicator-Positive Groundwater Source Sample: None Special Notice for Uncorrected Significant Deficiencies: None #### Table 9. Violation of Groundwater TT | Violation | Explanation | Duration | Actions Taken to Correct Violation | Health Effects
Language | |---------------------------------------|-------------|----------|------------------------------------|----------------------------| | None | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | #### For Systems Providing Surface Water as a Source of Drinking Water #### Table 10. Sampling Results Showing Treatment of Surface Water Sources | Treatment Technique (a) (Type of approved filtration technology used) | See attached AVEK Water Quality Report. | |---|---| | Turbidity Performance Standards (b) | Turbidity of the filtered water must: | | (that must be met through the water treatment process) | 1 – Be less than or equal to [Enter Turbidity Performance Standard to Be Less Than or Equal to 95% of Measurements in a Month] NTU in 95% of measurements in a month. | | | 2 – Not exceed [Enter Turbidity Performance Standard Not to Be Exceeded for More Than Eight Consecutive Hours] NTU for more than eight consecutive hours. | | | 3 – Not exceed [Enter Turbidity Performance Standard Not to Be Exceeded at Any Time] NTU at any time. | | Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1. | | | Highest single turbidity measurement during the year | | | Number of violations of any surface water treatment requirements | · · | - (a) A required process intended to reduce the level of a contaminant in drinking water. - (b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements. #### Summary Information for Violation of a Surface Water TT #### Table 11. Violation of Surface Water TT | Violation | Explanation | Duration | Actions Taken to Correct Violation | Health Effects Language | |---|-------------|----------|------------------------------------|-------------------------| | See attached AVEK Water Quality Report. | | | | | | | | | | | ## Summary Information for Operating Under a Variance or Exemption No Variance or Exemption ## Summary Information for Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements If a water system is required to comply with a Level 1 or Level 2 assessment requirement that is not due to an *E. coli* MCL violation, include the following information below [22 CCR section 64481(n)(1)]. ### Level 1 or Level 2 Assessment Requirement not Due to an E. coli MCL Violation Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present
or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found no coliforms indicating the need to look for potential problems in water treatment or distribution. However, if this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments. None During the past year we were not required to conduct Level 1 Assessments. No Level 1 assessments were completed. In addition, we were not required to take corrective actions. During the past year no Level 2 assessments were required to be completed for our water system. None [For Violation of the Total Coliform Bacteria TT Requirement, Enter Additional Information Described in Instructions for SWS CCR Document] None [For Violation of the Total Coliform Bacteria TT Requirement, Enter Additional Information Described in Instructions for SWS CCR Document] SWS CCR If a water system is required to comply with a Level 2 assessment requirement that is due to an *E. coli* MCL violation, include the information below [22 CCR section 64481(n)(2)]. None ## Level 2 Assessment Requirement Due to an E. coli MCL Violation *E. coli* are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely compromised immune systems. We found no *E. coli* bacteria, indicating the need to look for potential problems in water treatment or distribution. However, when this occurs, we are required to conduct assessment(s) identify problems and to correct any problems that were found during these assessments. We were not required to complete a Level 2 assessment because we found no *E. coli* in our water system. In addition, we were not required to take corrective actions. If a water system failed to complete the required assessment or correct all identified sanitary defects, the water system is in violation of the treatment technique requirement and shall include the following statements, as appropriate: None If a water system detects *E. coli* and has violated the *E. coli* MCL, include one or more the following statements to describe any noncompliance, as applicable: None [If a water system detects *E. coli* and has not violated the *E. coli* MCL, the water system may include a statement that explains that although they have detected *E. coli*, they are not in violation of the *E. coli* MCL.] None #### Water Conservation Tips: - 1. Check Faucets and pipes for leaks. A small leak can waste 20 gallons per day. - Don't flush the toilet to dispose of cigarettes or facial tissue. 5-7 gallons of water used each flush. - Use your water meter to check for leaks outside. Check meter read then use no water for 2 hours and then recheck to see if your meter has advanced. - Install water-saving showerheads. - 5. Short showers use less water than a bath in the tub. - 6. Turn off water while brushing your teeth or cleaning vegetables. - Plant drought-resistant lawns, shrubs, and plants. - 8. Put a layer of mulch around trees and plants. - Keeps weeds out of gardens and flower beds; weeds take water from the good plants. - 10. Sweep driveways, sidewalks, and steps instead of hosing them off. - 11. Avoid watering lawns when the wind is excessive, or during the hot part of the day. Check the internet for more water saving ideas, water conservation is very important. # ANTELOPE VALLEY – EAST KERN WATER AGENCY # 2024 ANNUAL WATER QUALITY REPORT LOS ANGELES COUNTY SYSTEM #### **OFFICERS** MATTHEW KNUDSON General Manager HOLLY H. HUGHES Secretary-Treasurer **BOARD OF DIRECTORS** GEORGE M. LANE Division 4 President GARY VAN DAM Division 7 Vice President DREW MERCY Division 1 KEITH DYAS Division 2 FRANK S. DONATO Division 3 ROBERT A. PARRIS Division 5 AUDREY T. MILLER Division 6 March 13, 2025 #### Dear General Manager: This is the 2024 Annual Water Quality Report from the Antelope Valley-East Kern Water Agency (AVEK). Since the water you obtain from AVEK represents one of your sources of water, we have included a summary of results for all analyses completed in 2024 for your convenience. If you find that you need copies of individual monitoring reports please feel free to contact me and I will be happy to provide those for you. In accordance with the Consumer Confidence Report (CCR) guidance manuals issued by the State Water Resources Control Board and the United States Environmental Protection Agency, we are herein providing you with the monitoring data and other information you will need to produce your CCR. AVEK provides some treated water to our customers in Acton by way of an intertie with Palmdale Water District (PWD). AVEK monitors the treated water quality provided by PWD at our Acton Water Treatment Plant before it reaches our first customer. The results of this monitoring have been included in this report. If you have specific questions regarding the quality of the raw water treated by Palmdale Water District, please contact them directly. If you have any questions or need additional information, please call me at 661-943-3201. However, please do not designate AVEK or this office as your contact in your CCR. According to the State Board and EPA guidelines, the designated contact person should be someone from your system. While we are always happy to answer questions about AVEK water, we do not have the specific information necessary to answer questions about your water, blending practices or distribution systems. Respectfully. Jordan Wray Laboratory Director #### Antelope Valley-East Kern Water Agency #### 2024 Annual Water Quality Report - Los Angeles County System 2024 Annual Water Quality Report - Los Angeles County System The Antelope Valley-East Kern Water Agency provides treated surface water as a source of drinking water. Treatment technique: Conventional EPA Turbidity Performance Standards: Turbidity of the filtered water must: 1. Be less than or equal to 0.30 NTU in 95% of measurements in a month. 2. Not exceed 1 NTU at any time. Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1: 100% Highest single turbidity measurement during the year: 0.15 Percentage of samples < 0.30 NTU: 100% The number of violations of any surface water treatment requirements: NONE Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements. The Antelope Valley-East Kem Water Agency also provides groundwater as a source of drinking water. Treatment technique: Chlorination EPA Groundwater Rule: AVEK meets the requirements of the Groundwater Rule by providing a minimum of 4-log reduction of viruses by continously providing a minimum free chlorine residual of 0.5 mg/L leaving the clearwell. Lowest single free chlorine residual measurement during the year: 0.87 Number of violations of the Groundwater Rule: NONE | ELECTRONIC PROPERTY. | | | | | | MICROB | IOLOGICAL | CONTAMINA | ANTS | | | EGINESIS EN | | | | | |------------------------------|--------------|-------------------------------------|-----------|--------|----------------------------|----------|--------------------------------------|---------------------|----------------------|--------------|---------|--------------------------|----------------|------------------------|---|---------------| | Type of Sample(s) | <u>F</u> | Parameter | | San | npling Frequ | ency | | M | CL | | | No. of Month | s in Violation | 1 | | Results | | Distribution
Distribution | | coliform Bacteri
Coliform/E. col | | | 152-193 / m
152-193 / m | | 5% positive
1 pos. with 2 TC pos. | | | None
None | | | | Range
0%-0.5%
0% | Average
0%
0% | | | | | | | | | INOF | RGANIC COL | TAMINANTS | 3 | | Balless | | | | Self-self-self-self-self-self-self-self-s | | | | | | | 1 | \ Anto- | Plant | | | _ | | ULTS | | | 20000 | NAME OF THE OWNER, OF THE OWNER, | IPM HEADQUEST | | | | | | PHG or | N NOOTOO | t (CWR) | | de Plant
t (CWR) | Quartz I
Effluent | | | nfluent
iter Project) | | | r Bank | The Control | | Parameter | Units | MCL | DLR | (MCLG) | Range | Average | Range | Average | Range | Average | | | | (CWR) | | ells | | Aluminum | μg/L | 1000 | 50 | 600 | | ND | ND | ND | ND | ND | Range | Average
ND | Range | Average | Range | Average | | Antimony | μg/L | 6 | 6 | 1 | | ND | | ND | ,,,, | ND | | ND | | | ND
ND | ND
ND | | Arsenic | μg/L | 10 | 2 | 0.004 | | ND | | ND | | ND | ND | ND | 3.4-5.6 | 4.5 | ND-12 | 4.2 | | Asbestos | MFL | 7 | 0.2 | | | | | | | | | ND | 0.4 0.0 | 4.0 | 140-12 | 4.2 | | Barium | μg/L | 1000 | 100 | 2000 | | ND | | 28 | | 22 | | ND | | | ND-110 | ND | | Beryllium
Cadmium | μg/L | 4 | 1 | 1 | | ND | | ND | | ND | | ND | | | ND | ND | | Chromium (Total) | μg/L | 5
50 | 1 | 0.04 | | ND | | ND | | ND | | ND | | | ND | ND | | Cyanide | μg/L
μg/L | 150 | 10
100 | 450 | | ND | | ND | | ND | | ND | | | ND | ND | | Fluoride | μg/L
mg/L | 2 | 0.1 | 150 | | ND | | ND | | ND | | ND | | | ND | ND | | Mercury | μg/L | 2 | 0.1 | 1.2 | | 0.11 | | ND | | ND | | ND | | | 0.12-0.36 | 0.19 | | Nickel | μg/L | 100 | 10 | 12 | | ND | | ND | | ND | | ND | | | ND | ND | | Nitrate (as N) | mg/L | 10 | 0.4 | 10 | | ND
ND | | ND | | ND | | ND | | | ND | ND | | Nitrite (as N) | mg/L | 1 | 0.4 | 10 | | ND
ND | | 0.44 | | ND | | ND | | | ND-5.1 | 2.8 | | Perchlorate | μg/L | 6 | 1 | 4 | | ND
ND | | ND | | ND | | ND | | | ND | ND | | Selenium | μg/L | 50 | 5 | 30 | | ND
ND | | ND
ND | | ND | | ND | | |
ND-1.5 | 0.25 | | Thallium | μg/L | 2 | 1 | 0.1 | | ND | | | | ND | | ND | | | ND-10 | 1.6 | | | | - | 55 | v.1 1 | | IND | | ND | | ND | | ND | | | ND | ND | | | THE RESERVE OF THE PERSON NAMED IN | THE RESERVE OF THE PERSON NAMED IN | | | -10 12 1 11101 | ONL AND S | LCCHUARI | STANDARL | 10 | | | | | | |---------------------------------|------------------------------------|------------------------------------|------------------|---------|---------------------------|-------------|---------------------------|-------------|---------------------------|-----------|---------------------------|--|--|------| | | | | | | | | RESI | ULTS | | | o vintaline consentation | A CONTRACTOR OF THE PARTY TH | THE OWNER OF O | ,000 | | Parameter | Units | MCL | DI D | Effluen | Plant
t (CWR) | Effluen | de Plant
t (CWR) | Effluen | Hill Plant
t (CWR) | (State Wa | nfluent
ter Project) | | r Bank
ells | | | Aluminum
Calcium
Chloride | μg/L
mg/L
mg/L | 1000
no standard
250 | <u>DLR</u>
50 | Range | Average
ND
22
82 | Range
ND | Average
ND
29
54 | Range
ND | Average
ND
15
48 | Range | Average
ND
15
47 | Range
ND
44-100
42-110 | Average
ND
68
68 | | Antelope Valley-East Kern Water Agency 2024 Annual Water Quality Report - Los Angeles County System | | | | | | | | LOO /III | golde edu. | ity Oyatei | 11 | | | | | |---|------------|---|--------------|----------------|----------|---|-----------|---|--------------------|--------------------|--------------|--------------------
---|--------| | | | | | | Plant | Eastsid | de Plant | Quartz I | Hill Plant | Rawl | nfluent | Wate | r Bank | 1 | | D | | | | Effluen | (CWR) | Effluen | t (CWR) | Effluent | (CWR) | | ter Project) | | ells | l | | Parameter | Units | MCL | DLR | Range | Average | l | | Color | Units | 15 | | <5 | <5 | <5 | <5 | <5 | <5 | 1101190 | 10 | <5 | <5 | l | | Copper | μg/L | 1000 | 50 | | ND | | ND | | ND | | ND | ND | ND | l | | Foaming Agents (MBAS) | mg/L | 0.5 | | l | ND | 1 | ND | | ND | | ND | | | ı | | Hardness (Total) as CaCO3 | mg/L | no standard | | 1 | 94 | | 100 | | 75 | | | ND | ND | 1 | | Iron | μg/L | 300 | 100 | 1 | ND | 1 | | | | | 73 | 130-310 | 200 | 1 | | Magnesium | mg/L | no standard | 100 | 1 | | 1 | ND | | ND | | 59 | ND | ND | | | Manganese | | | 00 | 1 | 9.4 | 1 | 7.0 | | 8.9 | | 8.7 | 4.0-13 | 7.8 | l | | Odor @ 60 C | μg/L | 50 | 20 | | ND | | ND | | ND | | ND | ND | ND | | | | Units | 3 | 1 | <1 | <1 | <1 | <1 | | <1 | | <1 | <1 | <1 | 1 | | pH | Units | no standard | | 7.1-7.7 | 7.5 | 6.1-8.6 | 7.0 | 6.8-7.3 | 7.0 | 7.4-9.3 | 8.3 | 7.6-8.2 | 8.0 | 1 | | Silver | μg/L | 100 | 10 | 1 | ND | 1000-0000000000000000000000000000000000 | ND | | ND | 7.1.0.0 | ND | ND | ND | | | Sodium | mg/L | no standard | | ŀ | 47 | 1 | 35 | | ND | | 32 | 33-56 | 40 | | | Specific Conductance | μmhos | 1600 | | 1 | 450 | 1 | 390 | | 34 | 240-660 | | | | | | Sulfate | mg/L | 250 | 0.5 | | 21 | | 41 | | | 240-000 | 370 | 560-870 | 670 | | | Thiobencarb (Bolero) | μg/L | 1 | 1 | | ND | | | | 340 | l . | 18 | 41-91 | 56 | | | Methyl tert-Butyl Ether (MTBE) | μg/L | 5 | 3 | | | | ND | | ND | | | ND | ND | | | Total Dissolved Solids | | | 3 | | ND | | ND | | ND | | ND | ND | ND | | | | mg/L | 1000 | | | 230 | | 220 | | 180 | | 170 | 280-550 | 380 | | | Turbidity | Units | 5 | | 0.05-0.15 | 0.10 | ND-0.15 | 0.05 | 0.05-0.15 | 0.10 | 0.35-21 | 29 | 0.05-1.5 | 0.40 | | | Zinc | μg/L | 5000 | 50 | | 380 | 10000000 | 360 | 360000000000000000000000000000000000000 | 610 | 1175.21 | ND | ND | ND | ŝ | | Total Alkalinity (as CaCO3) | mg/L | no standard | | 1 | 66 | | 62 | | 45 | 55-82 | 69 | ND | | | | Bicarbonate Alkalinity(as HCO3) | mg/L | no standard | | | 66 | | 62 | | 45 | 33-02 | | | ND | 8 | | Carbonate (as CO3) | mg/L | no standard | | | ND | | ND | | | | 64 | 89-190 | 150 | | | Hydroxide (as OH) | mg/L | no standard | | | ND | | | | ND | | ND | ND | ND | | | , | mg/L | no standard | | 1 | ND | | ND | | ND | | ND | ND | ND | | | | | | REPUBLIC | ES DE L'ARTINA | DADIO | OCIONI OC | | | AND DESCRIPTION OF | Water Street | | | | | | THE RESIDENCE OF THE PROPERTY | | CONTRACTOR OF THE PARTY | THE STATE OF | | RADIO | LOGICAL CO | NAMINAN | TS | ULTS | 0.5 | | | Parameter | Units | MCL | DLR | PHG | | | | | | Rawli | | Water Ba | ink Wells | | | Gross Alpha | pCi/L | 15 | 3 | | | | | | - 1 | (State Wat | er Project) | Range | Average | | | Gross Beta | pCi/L | | | | | | | | | | | 5.4-9.5 | 7.0 | | | Strontium 90 | | 50 | 4 | 2.2 | | | | | 1 | | | | | | | Tritium | pCi/L | 8 | 2 | 0.35 | | | | | | | ND | | 1 | | | Uranium | pCi/L | 20,000 | 1,000 | 400 | | | | | 1 | | ND | | | | | | pCi/L | 20 | 1 | 0.43 | | | | | | | ND | ND-8.4 | 5.4 | | | Radium 228 | pCi/L | | 1 | 0.019 | | | | | 1 | ND | ND | ND | ND ND | | | Radium 226 | pCi/L | | 1 | 0.05 | | | | | 1 | | ,,,, | ND | ND | | | NAME AND ADDRESS OF THE OWNER, WHEN | | | | | | | | | | | 91 | | 140 | | | | | | | | VOLATILE | ORGANIC | CONTAMINA | ANTS | | | | THE REAL PROPERTY. | 456 | | | | | | | | | | | | | THE REAL PROPERTY. | RESL | JLTS | ADMINISTRATION OF THE PARTY | ALC: N | | <u>Parameter</u> | Units | MCL | DLR | PHG | | | | | 1 | State Wat | | Water Ba | nk Wells I | | | | (5) dental | | | | | | | | - | | Average | Range | Average | | | 1,1,1-Trichlorethane (1,1,1-TCA) | μg/L | 200 | 0.5 | 1000 | | | | | | | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | µg/L | 1 | 0.5 | 0.1 | | | | | 1 | | ND | | | | | 1,1,2-Trichloroethane (1,1,2-TCA) | μg/L | 5 | 0.5 | 0.3 | | | | | | | | ND | ND | | | 1,1-Dichloroethane (1,1-DCA) | μg/L | 5 | 0.5 | 3 | | | | | - 1 | | ND | ND | ND | | | 1,1-Dichloroethylene (1,1-DCE) | μg/L | 6 | 0.5 | 10 | | | | | | | ND | ND | ND | | | 1,2,4-Trichlorobenzene | μg/L | 5 | | | | | | | | | ND | ND | ND | | | 1,2-Dichlorobenzene (o-DCB) | | | 0.5 | 5 | | | | | 1 | | ND | ND | ND | | | | μg/L | 600 | 0.5 | 600 | | | | | 1 | | ND | ND | ND | | | 1,2-Dichloroethane (1,2-DCA) | μg/L | 0.5 | 0.5 | 0.4 | | | | | 1 | | ND | ND | ND | | | 1,2-Dichloropropane | μg/L | 5 | 0.5 | 0.5 | | | | | i i | | ND | ND | ND | | | 1,3-Dichloropropene (Total) | μg/L | 0.5 | 0.5 | 0.2 | | | | | | | ND | | | | | 1,4-Dichlorobenzene (p-DCB) | μg/L | 5 | 0.5 | 6 | | | | | | | | ND | ND | | | Benzene | μg/L | 1 | 0.5 | 0.15 | | | | | | | ND | ND | ND | | | Carbon tetrachloride | μg/L | 0.5 | 0.5 | 0.15 | | | | | 1 | | ND | ND | ND | | | cis-1,2-Dichloroethylene (c-1,2-DCE) | | 6 | | | | | | | | | ND | ND | ND | | | cis-1,3-Dichloropropene | μg/L | О | 0.5 | 100 | | | | | - 1 | | ND | ND | ND | | | | μg/L | | 90-755 | | | | | | | | ND | ND | ND | | | Dichloromethane (Methylene Chloride) | μg/L | 5 | 0.5 | 4 | | | | | 1 | | ND | ND | ND | | | Ethylbenzene | μg/L | 300 | 0.5 | 300 | | | | | 1 | | ND | ND | ND | | | Methyl-tert-butyl ether (MTBE) | μg/L | 13 | 3 | 13 | | | | | 1 | | | | | | | Monochlorobenzene (Chlorobenzene) | μg/L | 70 | 0.5 | 70 | | | | | | | ND | ND | ND | | | Styrene | | | | | | | | | | | ND | ND | ND | | | 00000000000000 | (ICV) | 100 | 0.5 | 0.5 | | | | | | | | | | | | | μg/L | 100 | 0.5 | 0.5 | | | | | | | ND | ND | ND | | | | μg/L | 100 | 0.5 | 0.5 | | | | | 1 | | ND | ND | ND | | ## Antelope Valley-East Kern Water Agency 2024 Annual Water Quality Report - Los Angeles Cour | | | | 202 | Aimual Water Quality K | eport - Los Angeles County System | |---|--|---|---|--|--| | Parameter | Units | MCL | DLR | PHG | State Water Project Water Bank Wells | | Tetrachloroethylene (PCE) Toluene trans-1,2-Dichloroethylene (t-1,2-DCE) trans-1,3-Dichloropropene Trichloroethylene (TCE) Trichlorofturomethane (Freon 11) Trichlorotifluoroethane (Freon 113) Vinyl Chloride (VC) Xylenes (Total) | µg/L
µg/L
µg/L
µg/L
µg/L
µg/L
µg/L
µg/L | 5
150
10
5
150
1200
0.5
1750 | 0.5
0.5
0.5
0.5
5
10
0.5
0.5 | 0.06
150
60
1.7
1300
4000
0.05
1800 | Average | | USE SECURIOR AND NOVEMBER OF THE | All lands and the same | | in the second second | ALCOHOLD STATE | CVALTUETIC ODCANIC CUENCAL C | | | | |----------------------------------|------------------------|-------|----------------------|----------------|------------------------------|---------------|-------------|-----| | | | | | A COLUMN TO A | SYNTHETIC ORGANIC CHEMICALS | | | | | Parameter | 11-7- | | | 12000 | 1 6444 | | ULTS | _ | | Farameter | Units | MCL | DLR (DL) | PHG | Range | Nater Project | Water E | sar | | Alachlor | μg/L | 2 | 1 | 4 | ND ND | Average
ND | Range
ND | | | Atrazine | μg/L | 1 | 0.5 | 0.15 | ND ND | ND | ND | | | Bentazon | μg/L | 18 | 2 | 200 | ND ND | ND | ND | | | Benzo(a)pyrene | μg/L | 0.2 | 0.1 | 0.007 | ND ND | ND | ND | | | Carbofuran | μg/L | 18 | 5 | 0.7 | ND ND | ND | ND | | | Chlordane | µg/L | 0.1 | 0.1 | 0.03 | ND ND | ND | ND | | | 2,4-D | μg/L | 70 | 10 | 20 | ND ND | ND | ND | | | Dalapon | µg/L | 200 | 10 | 790 | ND ND | ND | ND
ND | | | Dibromochloropropane (DBCP) | μg/L | 0.2 |
0.01 | 0.0017 | ND ND | ND | ND ND | | | Di(2-ethylhexyl)adipate | μg/L | 400 | 5 | 200 | ND ND | ND | ND | | | Di(2-ethylhexyl)phthalate | μg/L | 4 | 3 | 12 | ND ND | ND | ND
ND | | | Dinoseb | μg/L | 7 | 2 | 14 | ND ND | ND | ND
ND | | | Diquat | μg/L | 20 | 4 | 6 | ND ND | ND | ND | | | Indothall | μg/L | 100 | 45 | 94 | ND ND | ND | ND
ND | | | ndrin | μg/L | 2 | 0.1 | 0.3 | ND ND | ND | | | | thylene Dibromide (EDB) | μg/L | 0.05 | 0.02 | 0.01 | ND ND | ND | ND
ND | | | lyphosate | μg/L | 700 | 25 | 900 | I ND | ND | ND | | | leptachlor | μg/L | 0.01 | 0.01 | 0.008 | ND ND | ND | | | | leptachlor Epoxide | μg/L | 0.01 | 0.01 | 0.006 | ND ND | | ND | | | lexachlorobenzene | μg/L | 1 | 0.5 | 0.03 | | ND | ND | | | exachlorocyclopentadiene | μg/L | 50 | 1 | 2 | ND ND | ND | ND | | | indane | μg/L | 0.2 | 0.2 | 0.032 | ND ND | ND | ND | | | lethoxychlor | μg/L | 30 | 10 | 0.09 | ND ND | ND | ND | | | olinate | μg/L | 20 | 2 | 1 | ND ND | ND | ND | | | xamyl | μg/L | 50 | 20 | 26 | ND ND | ND | ND | | | entachlorophenol | μg/L | 1 | 0.2 | 0.3 | | ND | ND | | | icloram | μg/L | 500 | 1 | 166 | ND ND | ND | ND | | | olychlorinated Biphenyls | μg/L | 0.5 | 0.5 | 0.09 | ND ND | ND | ND | | | imazine | μg/L | 4 | 1 | 4 | | ND | ND | | | niobencarb (Bolero) | μg/L | 70 | 1 | 42 | ND ND | ND | ND | | | oxaphene | μg/L | 3 | i | 0.03 | ND | ND | ND | | | 3,7,8-TCDD (Dioxin) | pg/L | 30 | 5 | 0.05 | ND | ND | ND | | | 4,5-TP (Silvex) | μg/L | 50 | 1 | 3 | ND ND | ND | ND | | | 2,3-Trichloropropane | μg/L | 0.005 | 0.005 | 0.0007 | ND | ND | ND | | | F-F-110 | µg/L | 0.000 | 0.003 | 0.0007 | ND ND | ND | ND | | | | | D | ISINFECTION RESIDUAL, PRECURSOR | S, and BYPROD | DUCTS | Mes week | SHEWER MAN | |-------------------|--|--------------|---------------------------------|---------------|-------|----------------------|-----------------| | Type of Sample(s) | Parameter | <u>Units</u> | MCL/MRDL | DLR | MRDLG | RESU | | | Distribution | Chlorine (as total Cl2) | mg/L | 4.0 | | 4 | Range
0.18 - 2.19 | Average
1.15 | | Treated Water | Total Organic Carbon (TOC) | mg/L | Treatment Requirement | 0.3 | | 1.4-3.3 | 2.1 | | | Total Organic Carbon (TOC) | mg/L | Treatment Requirement | 0.3 | | 2.1-5.2 | 3.2 | | | Stage 2 D/DBP Rule Total Trihalomethanes | μg/L | 80** | 0.5 | | 15-63 | 49 # | | Treated Water | Stage 2 D/DBP Rule Total Haloacetic Acids
Bromate | μg/L | 60** | 0.5 | | ND - 24 | 14# | | rrealed vyaler | | μg/L | 10 ⁺ | 1.0 | | | | Treated water promate #### Antelope Valley-East Kern Water Agency 2024 Annual Water Quality Report - Los Angeles County System **DEFINITIONS and FOOTNOTES** Plant Effluent, CWR, is finished, treated drinking water. Raw Water is the Source Water, the California Aqueduct or wells, prior to treatment. Units: mg/L = milligrams per liter, parts per million (ppm) µg/L = micrograms per liter, parts per hillion (ppb) pg/L = picograms per liter, parts per billion (ppb) pg/L = picograms per liter, parts per quadrillion (ppq) µmhos = micromhos, a measure of specific conductance pCi/L = pico Curies per liter < = less than > = greater than ND = none detected above the DLR ND = none detected above the DLR NTU = nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person. MCL: Maximum Contaminant Level. The highest level of a contaminant that is allowed in drinking water. MCLs are set by the US Environmental Protection Agency or the State Water Resources Control Board as close to the PHGs and MCLGs as is economically or technologically feasible. MRDL: Maximum Residual Disinfectant Level. The level of a disinfectant added for water treatment that may not exceeded at the consumer's tap. DLR: Detection Limit for purposes of Reporting. (DL): Detection limit determined by the Laboratory when no DLR has been established. MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency. MRDLG: Maximum Residual Disinfectant Level Goal. The level of a disinfectant added for water treatment below which there is no known or expected risk to health. MRDLGs are set by the US Environmental Protection Agency. Protection Agency. PHG: Public Health Goal. The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Office of Environmental Health Hazard Primary Drinking Water Standard: Primary MCLs, specific treatment techniques adopted in lieu of primary MCLs, and monitoring and reporting requirements for MCLs that are specified in regulations. Secondary Standards: Aesthetic standards established by the State Water Resources Control Board. All analyses performed by ELAP certified laboratories: AVEK Water Agency, Eurofins Eaton Analytical Laboratories, or Eurofins subcontract lab.