2017 Consumer Confidence Report

Water System Name: White Fence Farms Mut	ual Water Co 3 Report Date: May 29 2018
We test the drinking water quality for many constitu	ents as required by state and federal regulations. This report shows y 1 - December 31, 2017 and may include earlier monitoring data.
	te sobre su agua potable. Tradúzcalo ó hable con alguien que lo
Type of water source(s) in use: Purchased Treated	Surface Water only (Groundwater Sources were not used in 2017)
Name & general location of source(s): Antelope V	Valley East Kern Water Agency (AVEK) Connection - Palmdale
(Well 01A and Well 2 in Palmdale were not used in 2	2017, with Well 2 inactivated in March 2017).
Drinking Water Source Assessment information:	Wells 01A and 2 were not used in 2017 and the below is for
Source Water Assessments were conducted for Wells 01A and 02 of White Fence Farms MWC #3 in August 2001 by the State Water Resources	Well 01A – This source is not considered vulnerable to any potentially contaminating activities at this time and not associated with contaminants found in the water. (as of Aug. 2001)
Control Board, Division of Drinking Water. Copies of the complete assessments may be viewed at: State Water Resources Control Board, Division of Drinking Water, 500 North Central Avenue, Suite 500, Glendale, CA 91203.	Nitrate has been detected to a level as high as 40 mg/L, which is above half the MCL of 45 mg/L. There is nothing that could be associated with nitrate around the area, so it could be considered as naturally occurring. Another possible reason is a historic animal feeding operation around the area. This land use is rural, so this mabe a strong possibility.
Additional copies are also available, per email request wffmw3@gmail.com	Fluoride has been detected at a level of 0.3 mg/L, which is higher than the DLR level of 0.1, but is well below the MCL of 2.0 mg/L. This detection could have come from a possible historic demolition construction staging area.
The Company plans to update the information contained in the source assessment in the near future.	Well 02 — This source is not considered vulnerable to any potentially contaminating activities at this time that are not associated with contaminants found in the water. (as of Aug 2001)
nation of the state of the stat	Nitrate has been detected to a level of 58 mg/L which is above the MCL of 45 mg/L. There is nothing that could be associated with nitrate around the area, so it could be considered as naturally occurring. Another possibility is a historic animal feeding operation around the area. This land use is rural so this may be a strong possibility.
	Di-(e-ethlhexyl) phthalate has been detected at a level of 4 ug/L, which is exactly the value of the MCL. There is nothing around the areas associated with this chemical. There may have been historic hardware/lumber/parts store in the general area that may have contributed to this chemical's detection.
late Alburt is lewering or for emile light on the same	In March 2017, Well 2 was inactivated. The well will be destroyed in the future.
Time and place of regularly scheduled board mee participation:	etings for public 2nd Tues. of ea. Month at Well Site 1A, at 6:00 p.m.
For more information, contact: Brandi J. Moore	Phone: (661) 943-6916

SWS CCR Form Revised January 2018

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria	
Total Coliform Bacteria (state Total Coliform Rule)	(In a mo.) <u>0</u>	None	More than 1 sample in a month with a detection	0	Naturally present in the environment	
Fecal Coliform or E. coli (In the year) (state Total Coliform Rule)		None	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive	0	Human and animal fecal waste	
E. coli (federal Revised Total Coliform Rule)	(In the year)	None	A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or <i>E. coli</i>	0	Human and animal fecal waste	

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of Samples Collecte d	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead (ppb)	9/20/16	10	ND	None	15	0.2	Not applicable	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	9/20/16	10	0.23	None	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems erosion of natural deposits; leaching from wood preservatives

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminan
Sodium (ppm) Used 100% AVEK Water	may at min of [7] [] [] office out	w gaismub at Jao an As T mid at the store		none	none	Salt present in the water and is generally naturally occurring
See attached AVEK 2017 Water Quality Report	Emisionit v na decar con	d masoger had e mas es ab se				m. I der von von groß in regel in E trai ver geben mederne betreckte
Hardness (ppm) Used 100% AVEK Water See attached AVEK 2017 Water Quality Report	e put hiss a.wawsca	ondian got a		none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

TABLE 4 - DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
Stage 2 Disinfectant/Disinfecti on By-Products Rule Monitoring Violation	Failing to monitor the distribution system for total trihalomethanes (TTHM) and five haloacetic (HAA5) acids in accordance with the approved monitoring plan.	2012-2015	Create a monitoring schedule accordance with the approved plan.	Some people who drink water containing trihalomethanes and haloacetic acids in exces of the MCL over many years may experience liver, kidney, or central nervous system problems, and may have an increased risk of getting cancer.

For Water Systems Providing Groundwater as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLES									
Microbiological Contaminants (complete if fecal-indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant				
E. coli	(In the year)	1	0	(0)	Human and animal fecal waste				
Enterococci	(In the year)		TT	n/a	Human and animal fecal waste				
Coliphage	(In the year)		TT	n/a	Human and animal fecal waste				

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Groundwater TT

SPECIAL	NOTICE OF FECAL INDI	ICATOR-POSITIVE	GROUNDWATER SOURCE	SAMPLE
NONE				
	SPECIAL NOTICE FOR U	INCORRECTED SIG	NIFICANT DEFICIENCIES	
NONE				
	VIOLAT	TION OF GROUNDW	ATER TT	
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
NONE	JOM Wes O ne el en	I ha hamananya	Literaturasian Cleratura	days, t
line slog , polle tall a	sold no extern sm.b			n Aandrous over 1886 3-

During the past year we were required to conduct [NOT APPLICABLE] Level 1 assessment(s). [NOT APPLICABLE] Level 1 assessment(s) were completed. In addition, we were required to take [NOT APPLICABLE] corrective actions and we completed [NOT APPLICABLE] of these actions.

During the past year [NOT APPLICABLE] Level 2 assessments were required to be completed for our water system. [NOT APPLICABLE] Level 2 assessments were completed. In addition, we were required to take [NOT APPLICABLE] corrective actions and we completed [NOT APPLICABLE] of these actions.

NONE

Level 2 Assessment Requirement Due to an E. coli MCL Violation

E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely-compromised immune systems. We found *E. coli* bacteria, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) identify problems and to correct any problems that were found during these assessments.

We were required to complete a Level 2 assessment because we found *E. coli* in our water system. In addition, we were required to take [NOT APPLICABLE] corrective actions and we completed [NOT APPLICABLE] of these actions.

Water Conservation Tips:

1. Check Faucets and pipes for leaks. A small leak can waste 20 gallons per day.

2. Don't flush toilet to dispose of cigarettes or facial tissue. 5-7 gallons of water used each flush.

3. Use your water meter to check for leaks outside. Check meter read then use no water for 2 hours and then recheck to see if your meter has advanced.

Install water saving showerheads.

- 5. Short showers use less water than a bath in the tub.
- 6. Turn off water while brushing your teeth or cleaning vegetables.

7. Don't run the hose while washing your car.

- 8. Plant drought-resistant lawns, shrubs and plants.
- 9. Put a layer of mulch around trees and plants.
- 10. Keeps weeds out of gardens and flower beds; weeds take water from the good plants.

11. Sweep driveways, sidewalks and steps instead of hosing them off.

12. Avoid watering lawns when the wind is excessive, or during the hot part of the day.

Check the internet for more water saving ideas, water conservation is vitally important.

ANTELOPE VALLEY – EAST KERN WATER AGENCY

2017 ANNUAL WATER QUALITY REPORT LOS ANGELES COUNTY SYSTEM

Antelope Valley-East Kern Water Agency

2017 Annual Water Quality Report

We are pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water we have delivered to you over the past year. Our goal is, and always has been, to provide to you a safe supply of drinking water.

Our main water source is the State Water Project, California Aqueduct. The State Water Resources Control Board (State Board) has assessed the vulnerability of the State Water Project as to possible contaminating activities. The assessment's description and discussion of vulnerability is as follows:

"The California Aqueduct originates at the Sacramento-San Joaquin Delta at Clifton Court Forebay. Water in the Delta originates in the Sacramento River watershed, the San Joaquin watershed, and the watershed drainage from the Mokelumne River, Stanislaus River, Merced River and several smaller rivers that drain the eastern slopes of the Sierra Nevadas. Located in these drainage areas are a broad variety of potential sources of contamination including municipal, industrial and agricultural activities. Also influencing the quality of water pumped from the Delta is the impact of the estuarial nature of the Delta and the naturally occurring salt-water intrusion which is dependent to a large extent on the inflow from the contributing rivers.

The possible contaminating activities present within the California Aqueduct watershed are described in the State Water Project Watershed Sanitary Survey conducted by the California Department of Water Resources and their consultants in 1990 and updated in 2016."

Our alternative water source is State Water Project water which has been stored in the aquifer at various underground storage facilities (i.e. "water banks") and is recovered for water quality purposes or supply purposes during times of drought. The vulnerability of the facilities was assessed in 2014 as follows:

"The wells are most vulnerable to contaminants from activities such as herbicide use along transportation corridors or road right-of-ways; agricultural/irrigation wells; irrigated crops; application of fertilizer, pesticides, and herbicides; agricultural drainage; and the raw State Water Project surface water used to recharge the groundwater basins. Other potential contaminating activities include the potential presence of certain unknown activities such as unregistered underground storage tanks."

A copy of these assessments may be viewed at, Antelope Valley-East Kern Water Agency, 6500 West Avenue N, Palmdale, CA 93551.

If you have any questions about this report or the Antelope Valley-East Kern Water Agency, please contact Justin Livesay, Laboratory Director at 661-943-3201. We want our valued customers to be informed about our Water Agency. If you want to learn more, please attend any of our regularly scheduled Board meetings. They are held on the second and fourth Tuesday of every month, 6:30 PM, at the Antelope Valley-East Kern Water Agency Office, 6500 West Avenue N, Palmdale, CA, 93551.

Antelope Valley-East Kern \ 2017 Annual Water Quality Report - Los

The Antelope Valley-East Kern Water Agency provides treated surface water as a source of drinking water.

Treatment technique: Conventional

EPA Turbidity Performance Standards: Turbidity of the filtered water must:

1. Be less than or equal to 0.30 NTU in 95% of measurements in a month.

2. Not exceed 1 NTU at any time.

Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1:

0.14 NTU

Highest single turbidity measurement during the year: Percentage of samples < 0.30 NTU: 100%

Percentage of samples < 0.30 NTU: 100%

The number of violations of any surface water treatment requirements:

NONE

Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration filtration requirements.

The Antelope Valley-East Kern Water Agency also provides groundwater as a source of drinking water.

Treatment technique: Chlorination

EPA Groundwater Rule: AVEK meets the requirements of the Groundwater Rule by providing a minimum of 4-log reduction c

Lowest single free chlorine residual measurement during the year: 0.52

Number of violations of the Groundwater Rule:

NONE

9199 399	8	MI MI	CROBIOLOGICAL CONTA
Type of Sample(s)	<u>Parameter</u>	Sampling Frequency	MCL
Distribution	Total Coliform Bacteria	124 - 155 / mo	5% positive
Distribution	Fecal Coliform/E. coli	124 - 155 / mo	1 pos. with 2 TC
Raw Influent	Cryptosporidium	6 / mo	N/A*
*Cryptosporidium mo	onitoring is performed at our Acton	, Eastside, and Quartz Hill treatment plant in	ifluent in accordance with t

^{*}Cryptosporidium monitoring is performed at our Acton, Eastside, and Quartz Hill treatment plant influent in accordance with t cryptosporidium in our raw water supply and determine if additional treatment will be necessary.

ı	N	0	R	GA	M	0	COL	IIMATE
ı	N			G,	W	U	COI	A I VIVIII

				PHG or		n Plant		de Plar
Davassatas	Limite	MCI	DLD			t (CWR)		t (CWF
<u>Parameter</u>	<u>Units</u>	MCL	DLR	(MCLG)	Range	<u>Average</u>	Range	Avei
Aluminum	mg/L	1	0.05	0.6		ND	ND	N
Antimony	μg/L	6	6	1		ND		N
Arsenic	μg/L	10	2	0.004		ND		N
Barium	mg/L	1	0.1	2		0.016	The second	0.0
Beryllium	μg/L	4	1	1		ND		Ν
Cadmium	μg/L	5	1	0.04		ND		Ν
Chromium (Total)	μg/L	50	10			ND		1.
Chromium (Hexavalent)	µg/L	*	1	0.02		0.070		1.
Cyanide	μg/L	150	100	150		ND		N
Fluoride	mg/L	2	0.1	1	Land the same of t	0.087		0.0
Mercury	μg/L	2	1	1.2	A	ND		N
Nickel	μg/L	100	10	12		ND		Ν
Nitrate (as N)	mg/L	10	0.4	10		ND		0.6
Nitrite (as N)	mg/L	1	0.4	1	100000000000000000000000000000000000000	ND		N
Nitrate+Nitrite (as N)	mg/L	10		10		ND		0.6
Perchlorate	μg/L	6	4	1		ND		N
Selenium	μg/L	50	5	30		ND		N
Thallium	μg/L	2	1	0.1		ND	Diales I	N
Asbestos	MFL	7	0.2	7				

*There is currently no MCL for hexavalent chromium. The previous MCL of 0.010 r GENERAL PHYSICAL AND SECONI

				Actor	Plant	Eastsid	de Plar
				Effluen	t (CWR)	Effluen	t (CWF
<u>Parameter</u>	<u>Units</u>	MCL	DLR	Range	<u>Average</u>	Range	<u>Avei</u>
Aluminum	/1	200	50	-	MID	ND	N1

Antelope Valley-East Kern \ 2017 Annual Water Quality Report - Los

<u>Parameter</u>	<u>Units</u>	MCL	DLR	PHG
Tetrachloroethylene (PCE)	μg/L	5	0.5	0.06
Toluene	μg/L	150	0.5	150
trans-1,2-Dichloroethylene (t-1,2-DCE)	μg/L	10	0.5	60
trans-1,3-Dichloropropene	μg/L			
Trichloroethylene (TCE)	μg/L	5	0.5	1.7
Trichlorofluromethane (Freon11)	μg/L	150	5	1300
Trichlorotrifluoroethane (Freon 113)	μg/L	1200	10	4000
Vinyl Chloride (VC)	μg/L	0.5	0.5	0.05
Xylenes (Total)	μg/L	1750	0.5	1800
	A			

SYNTHETIC ORGANIC CH

Parameter	<u>Units</u>	MCL	DLR (DL)	PHG
Alachlor	μg/L	2	1	4
Atrazine	μg/L	1	0.5	0.15
Bentazon	μg/L	18	2	200
Benzo(a)pyrene	μg/L	0.2	0.1	0.007
Carbofuran	μg/L	18	5	0.7
Chlordane	μg/L	0.1	0.1	0.03
2,4-D	μg/L	70	10	20
Dalapon	μg/L	200	10	790
Dibromochloropropane (DBCP)	μg/L	0.2	0.01	0.0017
Di(2-ethylhexyl)adipate	μg/L	400	5	200
Di(2-ethylhexyl)phthalate	μg/L	4	3	12
Dinoseb	μg/L	7	2	14
Diquat	μg/L	20	4	6
Endothall	μg/L	100	45	94
Endrin	μg/L	2	0.1	0.3
Ethylene Dibromide (EDB)	μg/L	0.05	0.02	0.01
Glyphosate	μg/L	700	25	900
Heptachlor	μg/L	0.01	0.01	0.008
Heptachlor Epoxide	μg/L	0.01	0.01	0.006
Hexachlorobenzene	μg/L	1	0.5	0.03
Hexachlorocyclopentadiene	μg/L	50	1	2
Lindane	μg/L	0.2	0.2	0.032
Methoxychlor	μg/L	30	10	0.09
Molinate	μg/L	20	2	1
Oxamyl	μg/L	50	20	26
Pentachlorophenol	μg/L	1	0.2	0.3
Picloram	μg/L	500	1	166
Polychlorinated Biphenyls	μg/L	0.5	0.5	0.09
Simazine	μg/L	4	1	4
Thiobencarb (Bolero)	μg/L	70	1	42
Toxaphene	μg/L	3	1	0.03
2,3,7,8-TCDD (Dioxin)	pg/L	30	5	0.05
2,4,5-TP (Silvex)	μg/L	50	1	3
				DISINEEC

DISINFECTION RESIDUAL, PRECURSO

Type of Sample(s)	<u>Parameter</u>	<u>Units</u>	MCL/MRDL
Distribution	Chlorine (as total Cl2)	mg/L	4.0
Treated Water	Total Organic Carbon (TOC)	mg/L	Treatment Requirement
State Water Project	Total Organic Carbon (TOC)	mg/L	Treatment Requirement
Distribution	Stage 2 D/DBP Rule Total Trihalomethanes	μg/L	80**
Distribution	Stage 2 D/DBP Rule Total Haloacetic Acids	μg/L	60**
Treated Water	Bromate	μg/L	10 ⁺
** OI O D IDDE	NEW TOTAL CHEMICAL STREET, THAN A STREET, THE STREET,		I

STAGE 2 DISINFECTION BYPRODUCT RULE TOTAL TRIHALOMETHANE (TTHM) QUARTERLY SUMMARY REPORT

Water	System	Name
TT ARECT	CLADSCIII	T ACTESTS.

Antelope Valley-East Kern Water Agency

System No.

1910045

**************************************	TTHM (ppb)								
	1-1-1-1-1	Monitorir	g Periods				1		
in complet topost last locare	MP1	MP2	MP3	MP4 (Current Qtr)	LRAA (TTHM)	Meets Standard? (Y/N)	OEL (TTHM)	OEL (Y/N)	
Sample Date (month/date/year):	02/24/17	05/18/17	08/17/17	11/16/17		(1714)	(12) US (1)	(1714)	
Vincent Tank	69	43	38	47	49.25	Υ	43.75	N	
LVAV	29	15	23	34	25.25	Υ	26.50	N	
110th/R	26	13	12	22	18.25	Υ	17.25	N	
165th	37	18	20	30	26.25	Υ	24.50	N	
5th/M	38	9.0	17	32	24.00	Υ	22.50	N	

Comments:				
The second second second				

Note: If your OEL is higher than the TTHM MCL at any location in the distribution system, you must conduct an operational evaluation by examining the system treatment and distribution operational practices, including: storage tank operations; excess storage capacity; distribution system flushing; changes in sources or source water quality; treatment changes; and any problems that may contribute to TTHM formation. From this evaluation you must identify what steps could be taken to minimize future OEL exceedances: Please submit your operational evaluation report to the State for review within 90 days.

Name & Title of Person Submitting Report

Justin Livesay - Laboratory Director

Date

12/11/2017

Quarterly Bromate Report for Disinfection Byproducts Compliance (in µg/L or ppb)

System Name: Antelope Va	alley-La	st Kern	water A	gency	.a	Syst	em No.:	1	910045)	Year	201	1	Quarte	
2016			1st Qtr.			2nd Qtr.			3rd Qtr.		d Qtr.				
Sample Date (month/date):	1st Q	2nd Q	3rd Q	4th Q	1/11	2/8	3/8	Quarterly Average	4/12	5/10	6/14	Quarterly Average	7/12	8/9	9/13
Site 1 - QHWTP	0.0	6.5	2.4	3.8	OFF	ND	OFF	0.0	ND	ND	ND	0.0	ND	ND	4.0
Site 2 - EWTP	2,9	6.4	4.8	2.6	ND	NĐ	ND	0.0	ND	ND	ND	0.0	ND	ND	ND
Site 3 - AWTP	OFF	OFF	OFF	OFF	OFF	OFF	OFF		OFF	OFF	OFF				
System Quarterly Average	1,5	6.5	3.6	3.2				0.0				0.0		Ballin I	
Running Annual Average			E	3.7	<u>LE CEI</u>			3.3			Para de la	1.7			ED-03
Meets Standard?* (check box)								Yes 🗸 No				Yes V			
Identify the sample locations in			THE RESERVE AND ADDRESS OF THE PERSON NAMED IN					1					-111	-1 -4 1b	
Site		Sample I	Location)								Samples on the plant of the pla			
1 Quartz Hill Clear Well R		<u> </u>	Marin Carlos Marin					-				n shutdow		20116.	011
2 Eastside Clear Well Reservoir 3 Acton Clear Well Reservoir								1			-,				
3 Acton Clear Well Resen	7011							1							
											7		1		and the second
													1		7
									-		1	2		<	
										Signatu	ure		/		

*If, during the first year of monitoring, any individual quaverage of that system to exceed the standard, then the quarter.

3/28/02

Antelope Valley-East Kern Water

LA System No. 191004!

TOC Removal Running Annual

Sample		Alkalinity	Raw TOC	Treated TOC	
Date	Plant	mgCaCO3/L	mg/L	mg/L	T
1/6/2017	QHWTP	73.5	3.33	1.79	
1/11/2017	EWTP	73.9	3.51	2.05	
	AWTP	plant off			
2/8/2017	QHWTP	49.1	5.84	2.34	
"	EWTP	50.1	5.82	2.50	
II .	AWTP	plant off			
3/8/2017	QHWTP	47.7	5.64	2.03	
11	EWTP	47.3	5.70	2.16	
11	AWTP	plant off			
4/12/2017	QHWTP	39.9	3.77	1.48	
	EWTP	40.3	4.11	1.81	
II.	AWTP	plant off			
5/10/2017	QHWTP	33.6	3.22	1.48	
"	EWTP	35.2	3.47	1.50	
п	AWTP	plant off			
6/14/2017	QHWTP	35.5	2.90	1.37	
11	EWTP	34.9	3.11	1.57	
II	AWTP	plant off			
7/12/2017	QHWTP	29.2	2.93	1.35	
11	EWTP	28.4	3.19	1.39	
II .	AWTP	plant off			
8/9/2017	QHWTP	43.6	2.94	1.34	
H	EWTP	45.4	3.12	1.48	
II .	AWTP	plant off			
9/13/2017	QHWTP	49.4	2.68	1.23	
n n	EWTP	50.8	2.86	1.49	
н	AWTP	plant off			
10/11/2017	QHWTP	58.3	2.94	1.57	
"	EWTP	55.9	2.88	1.70	
u	AMATO	plant off		progress School	