2024 Consumer Confidence Report

Water System Information

Water System Name: WEST SIDE PARK MUTUAL WATER COMPANY, INC.

Report Date: June 11, 2025

Type of Water Source(s) in Use: Well 01, Ground Water Well, Well 02 Inactive at present. Supplemental water was also purchased from AVEK. A separate water quality report from AVEK is included as an additional report.

Name and General Location of Source(s): 40317 11th Street West, Palmdale, CA 93551

Drinking Water Source Assessment Information: Well 01 – The source is most vulnerable to the following activities, not associated with any detected contaminants; septic systems, high density (< 1 acre), above ground storage tanks, and animal operations that may be in the proximity.

Well 02 – Has shown no vulnerability at this time associated with the chemicals in the water. The Source is considered most vulnerable to the following activities not associated with any detected contaminants; septic systems, high density (< 1 acre), above ground storage tanks, and animal operations that may be in the proximity.

Time and Place of Regularly Scheduled Board Meetings for Public Participation: The first Thursday of each month, 7:00 p.m. at the well site. If you wish to address the Board, please call in advance so your name can be placed on the agenda

For More Information, Contact: Mary Wood, 877-500-3880, Ext. 3

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2024, and may include earlier monitoring data.

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse West Side Park a 40317 11th Street West, Palmdale, CA 93551 para asistirlo en español.

Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 West Side Park Mutual以获得中文的帮助: 40317 11th Street West, Palmdale, CAS 93551, 877-500-3880.

Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa West Side Park Mutual, 40317 11th Street West, Palmdale, CA 93551 o tumawag sa 877-500-3880, para matulungan sa wikang Tagalog.

Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ West Side Park Mutual tại 40317 11th Street West, Palmdale, CA 03551 để được hỗ trợ giúp bằng tiếng Việt.

Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus West Side Park Mutual Water Co.. Thov hu rau ntawm 40317 11th Street West, Palmdale, CA 93551, or 877-500-3880 rau kev pab hauv lus Askiv.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.

Term	Definition						
ND	Not detectable at testing limit.						
ppm	parts per million or milligrams per liter (mg/L)						
ppb	parts per billion or micrograms per liter (µg/L)						
ppt	parts per trillion or nanograms per liter (ng/L)						
ppq	parts per quadrillion or picogram per liter (pg/L)						
pCi/L	picocuries per liter (a measure of radiation)						

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Complete if bacteria are detected.

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	0	0	(a)	0	Human and animal fecal waste

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 2. Sampling Results Showing the Detection of Lead and Copper

Complete if lead or copper is detected in the last sample set. There were No lead levels in our testing.

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb)	8/29/22	5	0	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	8/29/22	5	0.23	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

West Side Park Mutual Water Co conducted a Lead and Copper Inventory to determine the material used in the water lines from our meter to each dwelling. There were no lead lines

found. We have completed about 90% of the inventory, and the remaining 10% will be completed in 2025.

Table 3. Sampling Results for Sodium and Hardness

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	9/24/24	100	N/A	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	9/24/24	240	N/A	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Nitrate (ppm) Well 01	9/24/24	1.4	N/A	10	0.40	Runoff/leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Fluoride (ppm) Well 01	9/24/24	0.25	N/A	2.0	0.10	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Radium 226 pCi/L	7/13/21	0.10	N/A	5	5	Erosion of natural deposits
Radium 228 pCi/L	7/13/21	1.29	N/A	5	5	Erosion of natural deposits.
Uranium pCi/L Iron (ppm) Well 01	 7/13/21	1.6	N/A	20	0.43	Erosion of natural deposits
non (ppin) weil or			N/A	300		

TTHM (ppb)	7/13/21	0 include because of 2023 level.		80	100	Leaching from natural deposits; industrial wastes
Distribution system HAA5 (ppb)	 	28.6	N/A	60	 	Byproduct of drinking water disinfection
Distribution system	 5/22/22	6.3	•		<u></u> <u></u>	Byproduct of drinking water disinfection.

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard

						
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Chloride (ppm) Well 01	9/24/24	69	N/A	500	1.0	Runoff/leaching from natural deposits; seawater influences
Sulfate (ppm) Well 01	9/24/24	160	N/A	500	0.50	Runoff/leaching from natural deposits
Specific Conduct- ance Well 01 uS/cm	9/24/24	930	N/A	1600	2.0	Erosion of natural deposits.
Total Dissolved Solids (TDS) ppm	9/24/24	590	N/A	1000	5.0	Substances that form ions when in water; industrial wastes.
Turbidity NTU Well 01	9/24/24	0.12	N/A	5	0.10	Soil Runoff

Table 6. Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
Vanadium (ppb) Well 01	9/24/24	6.0	N/A	3	Vanadium exposure resulted in developmental and reproductive effects in rats

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. West Side Park Mutual Water Co. is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Additional Special Language for Nitrate: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capability of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of skin. Nitrate levels above 10 ppm may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. The level of nitrate in our water is 1.4.

State Revised Total Coliform Rule (RTCR): This consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements during 2021. These revisions add the requirements of the Federal Revised Total Coliform Rule, effective since April 1, 2016, to the existing State Total Coliform Rules. The revised rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e. total coliform and E. coli bacteria) The I/ S/ EPA anticipates greater public protection as the rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water Systems that exceed a specified frequency to total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system. The State Revised Total Coliform Rule became effective July 1, 2021. Please note: On page 2 of this report, there is reverence to Leel 1 and 2 Assessments.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct Violation		
NONE	N/A	N/A	N/A	N/A	

For Water Systems Providing Groundwater as a Source of Drinking Water

Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples

Microbiological Contaminants (complete if fecal- indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
NONE	0	N/A	0	0	Human and animal fecal waste
Enterococci	0	N/A	TT	N/A	Human and animal fecal waste
Coliphage	0	N/A	TT	N/A	Human and animal fecal waste

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Violation of a Groundwater TT

Special Notice of Fecal Indicator-Positive Groundwater Source Sample: NONE

Special Notice for Uncorrected Significant Deficiencies: NONE

Table 9. Violation of Groundwater TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
None	N/A	N/A	N/A	N/A

For Systems Providing Surface Water as a Source of Drinking Water

Table 10. Sampling Results Showing Treatment of Surface Water Sources

Treatment Technique (a) (Type of approved filtration technology used)	No Surface water distributed in this system.					
Turbidity Performance Standards (b)	Turbidity of the filtered water must:					
(that must be met through the water treatment process)	1 – Be less than or equal to [Enter Turbidity Performance Standard to Be Less Than or Equal to 95% of Measurements in a Month] NTU in 95% of measurements in a month.					
	2 – Not exceed [Enter Turbidity Performance Standard Not to Be Exceeded for More Than Eight Consecutive Hours] NTU for more than eight consecutive hours.					
	3 – Not exceed [Enter Turbidity Performance Standard Not to Be Exceeded at Any Time] NTU at any time.					
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	[Enter No.]					
Highest single turbidity measurement during the year	[Enter No.]					
Number of violations of any surface water treatment requirements	[Enter No.]					

⁽a) A required process intended to reduce the level of a contaminant in drinking water.

Summary Information for Violation of a Surface Water TT

Table 11. Violation of Surface Water TT

Violation			Actions Taken to Correct Violation	Health Effects Language
NONE	N/A	N/A	N/A	N/A

⁽b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

Summary Information for Operating Under a Variance or Exemption

This water system did not operate under a Variance or Exemption.

Summary Information for Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements

If a water system is required to comply with a Level 1 or Level 2 assessment requirement that is not due to an *E. coli* MCL violation, include the following information below [22 CCR section 64481(n)(1)].

Level 1 or Level 2 Assessment Requirement not Due to an E. coli MCL Violation

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found no coliforms indicating the need to look for potential problems in water treatment or distribution.

The water system shall include the following statements, as appropriate:

During the past year we were required to conduct 0 (None) Level 1 assessment(s) because we did not have any positive coliform test results

If the water system failed to complete all the required assessments or correct all identified sanitary defects, the water system is in violation of the treatment technique requirement and shall include the following statements, as appropriate:

We were not required to conduct any required assessments.

Level 2 Assessment Requirement Due to an E. coli MCL Violation

E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely compromised immune systems. We found *E. coli* bacteria, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) identify problems and to correct any problems that were found during these assessments. We had no positive test results due to E. coli.

If a water system failed to complete the required assessment or correct all identified sanitary defects, the water system is in violation of the treatment technique requirement and shall include the following statements, as appropriate:

We were not required to conduct any required assessments because there was no positive result for E. coli in our water system

If a water system detects *E. coli* and has violated the *E. coli* MCL, include one or more the following statements to describe any noncompliance, as applicable:

We had an no E. coli-positive samples in our water system.

Although we did not have any test result over the MCL, Health Effects language have been provided for your information if there was any detection.

TABLE 4 – DETECTION OF CONTAMINANTS WITH A PROMARY DRINKING WATER STANDARD. Primary standards are set for health purposes.

NITRATE - Infants below the age of six months who drink water containing nitrate in excess of the MCL (10 ppm) may quickly become seriously ill and, if untreated, may die because high nitrate levels can interfere with the capacity of the infants' blood to carry oxygen. Symptoms include shortness of breath and blueness of the skin. High nitrate levels may also affect oxygen-carrying ability of the blood of pregnant women. Our testing result is 1.4.

FLUORIDE – Some people who drink water containing Fluoride in excess of the Federal MCL (4ppm) over many years may get bone disease, including pain and tenderness of the bones. Children who drink water containing Fluoride in excess of the State MCL of 2 ppm may get mottled teeth. Our result was 0.25.

RADIUM 226 and 228 – Some people who drink water containing radium 226 and 228 in excess of the MCL over many years, may have an increased risk of getting cancer. The level of our result was 0.10 for 226; 1.29 for 228. The MCL for both is 5..

URANIUM - Some People who drink water containing Uranium in excess of the MCL, over many years, may have kidney problems or an increased risk of getting cancer. Our test result was 1.6 and the MCL is 5; we are well below the MCL>

TTHM – Some people who drink water containing triholomethanes in excess of the MCL (80 ppb) over many years may experience liver, kidney, or central nervous system problems. Also, they may have an increased risk of getting cancer. Our result was 28.6, below the MCL of 80 ppb.

HAA5 – Some people who drink water containing haocetic acids in excess of the MCL (60 ppb) over many years may experience liver, kidney, or central never system problems. They may also have an increased risk of getting cancer. Our result was 6.3, below the MCL of 60 ppb.

TABLE 5 – DETECTION OF CONTAMINANS WITH A SECONDARY DRINKING WATER STANDARD. Secondary standards are set on aesthetics.

CHLORIDE and SPECIFIC CONDUCTANCE have no effects at the level detected.

SULFATE – Although there are no know health effects, persons who drink water with a higher level than the MCL may experience diarrhea.

TOTAL DISSOLVED SOLIDS (TDS) – TDS are the sum of solids that have dissolved in the water, such as calcium, minerals, and some organics. Higher levels may cause scaling in plumbing.

TURBIDITY- Turbidity has no health effects. However, high levels of turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms which include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.

REMEMBER TO USE WATER WISELY AND CONSERVE YOUR USE.
YOU MAY WISH TO WALK YOUR PROPERTY TO CHECK FOR LEAKS.

Antelope Valley-East Kern Water Agency 2024 Annual Water Quality Report - Los Angeles County System

The Antelope Valley-East Kern Water Agency provides treated surface water as a source of drinking water

The Antelope Valley-East Kern Water Agency provides treated surface water as a source of drinking water.

Treatment technique: Conventional

EPA Turbidity Performance Standards: Turbidity of the filtered water must:

1. Be less than or equal to 0.30 NTU in 95% of measurements in a month.

2. Not exceed 1 NTU at any time.

Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1: 100%

Highest single turbidity measurement during the year: 0.15

Percentage of samples < 0.30 NTU: 100%

The number of violations of any surface water treatment requirements: NONE

Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

The Antelope Valley-East Kern Water Agency also provides groundwater as a source of drinking water. Treatment technique: Chlorination

EPA Groundwater Rule: AVEK meets the requirements of the Groundwater Rule by providing a minimum of 4-log reduction of viruses by continously providing a minimum free chlorine residual of 0.5 mg/L leaving the clearwell.

Lowest single free chlorine residual measurement during the year:

Number of violations of the Groundwater Rule:

NONE

						MICROBI	OLOGICAL	CONTAMINA	ANTS							
Type of Sample(s)	P	arameter		Sampling Frequency				M	MCL No. of			No. of Month	s in Violation	1	System Range	Results Average
Distribution		oliform Bacteri	а		152-193 / m	0		5% p	ositive			No	one		0%-0.5%	0%
Distribution	Fecal (Coliform/E. coli			152-193 / m	0		1 pos. with	2 TC pos		None				0%	0%
INORGANIC CONTAMINANTS																
											ULTS		•			
						n Plant		de Plant		z Hill Plant		nfluent			r Bank	
				PHG or		t (CWR)		t (CWR)		nt (CWR)		ter Project)		t (CWR)	We	
<u>Parameter</u>	<u>Units</u>	MCL	DLR 50	(MCLG)	Range	Average	Range	Average	Range	<u>Average</u>	Range	<u>Average</u>	Range	Average	Range	Average
Aluminum	μg/L	1000		600		ND	ND	ND	ND	ND		ND			ND	ND
Antimony	μg/L	6	6	1		ND		ND		ND		ND			ND	ND
Arsenic	μg/L	10	2	0.004		ND		ND		ND	ND	ND	3.4-5.6	4.5	ND-12	4.2
Asbestos	MFL	7	0.2									ND			1	
Barium	μg/L	1000	100	2000		ND		28		22		ND			ND-110	ND
Beryllium	μg/L	4	1	1		ND		ND		ND		ND			ND	ND
Cadmium	μg/L	5	1	0.04		ND		ND		ND		ND			ND	ND
Chromium (Total)	μg/L	50	10			ND		ND		ND		ND			ND	ND
Cyanide	μg/L	150	100	150		ND		ND		ND		ND			ND	ND
Fluoride	mg/L	2	0.1	1		0.11		ND		ND		ND			0.12-0.36	0.19
Mercury	μg/L	2	1	1.2		ND		ND		ND		ND			ND	ND
Nickel	μg/L	100	10	12		ND		ND		ND		ND			ND	ND
Nitrate (as N)	mg/L	10	0.4	10		ND		0.44		ND	1	ND	1		ND-5.1	2.8
Nitrite (as N)	mg/L	1	0.4	1		ND		ND		ND	1	ND	l		ND	ND
Perchlorate	μg/L	6	1	1		ND		ND		ND	1	ND	1		ND-1.5	0.25
Selenium	μg/L	50	5	30		ND		ND		ND	1	ND	1		ND-10	1.6
Thallium	μg/L	2	1	0.1		ND		ND		ND	1	ND	l		ND	ND

				GENE	ERAL PHYSIC	CAL AND SE	CONDARY:	STANDARD	S					
RESULTS RESULTS														
				Acton Plant		Eastside Plant		Quartz Hill Plant		Raw Influent		Water Bank		
				Effluent (CWR)		Effluen	it (CWR) Effluent (CWR)		(CWR)	(State Water Project)		Wells		
<u>Parameter</u>	Units	MCL	DLR	Range	Average	Range	Average	Range	Average	Range	Average	Range	Average	
Aluminum	μg/L	1000	50	-	ND	ND	ND	ND	ND		ND	ND	ND	
Calcium	mg/L	no standard	7000		22		29		15		15	44-100	68	
Chloride	mg/L	250			82		54		48		47	42-110	68	

			202	<u>4 Annual W</u>	later Qua	lity Report	- Los Ang	geles Cou	nty Systen	1				
				Acton		Eastsid	le Plant	Quartz I	Hill Plant	Raw Ir	nfluent	Wate	r Bank	
_				Effluent		Effluent			(CWR)	(State Wat		0.505	ells	
<u>Parameter</u>	Units	MCL	DLR	Range	Average	Range	Average	Range	Average	Range	Average	Range	Average	
Color Copper	Units	15 1000	50	<5	<5 ND	<5	<5 ND	<5	<5 ND		10 ND	<5 ND	<5 ND	
Foaming Agents (MBAS)	μg/L mg/L	0.5	50		ND		ND	l	ND ND		ND	ND ND	ND ND	
Hardness (Total) as CaCO3	mg/L	no standard			94		100		75		73	130-310	200	
Iron	μg/L	300	100		ND		ND		ND		59	ND	ND	
Magnesium	mg/L	no standard	100		9.4		7.0		8.9		8.7	4.0-13	7.8	
Manganese	μg/L	50	20	1	ND		ND		ND		ND	ND ND	ND	
Odor @ 60 C	Units	3	1	<1	<1	<1	<1		<1		<1	<1	<1	
PH	Units	no standard	3)	7.1-7.7	7.5	6 1-8 6	7.0	6.8-7.3	7.0	7.4-9.3	8.3	7.6-8.2	8.0	
Silver	μg/L	100	10		ND		ND		ND		ND	ND	ND	
Sodium	mg/L	no standard			47		35		ND		32	33-56	40	
Specific Conductance	μmhos	1600			450		390		34	240-660	370	560-870	670	
Sulfate	mg/L	250	0.5		21		41		340		18	41-91	56	
Thiobencarb (Bolero)	μg/L	1	1		ND		ND		ND			ND	ND	
Methyl tert-Butyl Ether (MTBE)	μg/L	5	3		ND		ND		ND		ND	ND	ND	
Total Dissolved Solids	mg/L	1000			230		220		180		170	280-550	380	
Turbidity	Units	5		0.05-0.15	0.10	ND-0.15	0.05	0.05-0.15	0.10	0.35-21	2.9	0.05-1.5	0.40	
Zinc	µg/L	5000	50		380		360		610		ND	ND	ND	
Total Alkalinity (as CaCO3)	mg/L	no standard			66	1	62		45	55-82	69	ND	ND	
Bicarbonate Alkalinity(as HCO3)	mg/L	no standard			66		62		45		64	89-190	150	
Carbonate (as CO3)	mg/L	no standard			ND		ND		ND		ND	ND	ND	
Hydroxide (as OH)	mg/L	no standard			ND	1	ND		ND		ND	ND	ND	
					-11 × 10 × 10 × 10 × 10 × 10			Andrew Street, Sellings						
					RADIO	LOGICAL CC	NTAMINAN	ITS						
										D		ULTS		
<u>Parameter</u>	Units	MCL	DLR	PHG						Raw Ir			ank Wells	
Gross Alpha	pCi/L	15	3							(State Wat	er Project)	Range 5.4-9.5	Average 7.0	
Gross Beta	pCi/L	50	4									3.4-9.3	7.0	
Strontium 90	pCi/L	8	2	0.35							ND			
Tritium	pCi/L	20,000	1,000	400							ND	l		
Uranium	pCi/L	20	1	0.43							ND	ND-8.4	5.4	
Radium 228	pCi/L		1	0.019						ND	ND	ND	ND	
Radium 226	pCi/L		1	0.05					J			ND	ND	l
					VOLATII	E ORGANIC	CONTABIN	ANITO						
					VOLATIL	EURGANIC	CONTAMIN	ANIS			DEC	ULTS		
- ·	77.00								1	State Wat			ank Wells	
<u>Parameter</u>	Units	MCL	DLR	PHG						Clate Wat	Average	Range	Average	
1,1,1-Trichlorethane (1,1,1-TCA)	μg/L	200	0.5	1000							ND	ND	ND	
1,1,2,2-Tetrachloroethane	μg/L	1	0.5	0.1							ND	ND	ND	
1,1,2-Trichloroethane (1,1,2-TCA)	μg/L	5	0.5	0.3							ND	ND	ND	
1,1-Dichloroethane (1,1-DCA)	μg/L	5	0.5	3							ND	ND	ND	
1,1-Dichloroethylene (1,1-DCE)	μg/L	6	0.5	10							ND	ND	ND	
1,2,4-Trichlorobenzene	µg/L	5	0.5	5							ND	ND	ND	
1,2-Dichlorobenzene (o-DCB)	μg/L	600	0.5	600							ND	ND	ND	
1,2-Dichloroethane (1,2-DCA)	μg/L	0.5	0.5	0.4				- 4			ND	ND	ND	
1,2-Dichloropropane	μg/L	5	0.5	0.5							ND	ND	ND	
1,3-Dichloropropene (Total)	μg/L	0.5	0.5	0.2							ND	ND	ND	
1,4-Dichlorobenzene (p-DCB)	μg/L	5	0.5	6							ND	ND	ND	
Benzene	μg/L	1	0.5	0.15							ND	ND	ND	
Carbon tetrachloride	μg/L	0.5	0.5	0.1							ND	ND	ND	
cis-1,2-Dichloroethylene (c-1,2-DCE)	μg/L	6	0.5	100							ND	ND	ND	
cis-1,3-Dichloropropene	μg/L	-									ND	ND	ND	le:
Dichloromethane (Methylene Chloride)	μg/L	5	0.5	4							ND	ND	ND	
Ethylbenzene	μg/L	300	0.5	300							ND	ND	ND	
Methyl-tert-butyl ether (MTBE)	μg/L	13	3	13							ND	ND	ND	
Monochlorobenzene (Chlorobenzene)	μg/L	70	0.5	70							ND	ND	ND	
Styrene	μg/L	100	0.5	0.5					1		ND	ND	ND	

Antelope Valley-East Kern Water Agency 2024 Annual Water Quality Report - Los Angeles County System

Parameter	Units	MCL	DLR	PHG	State Water Project	Water B	ank Wells	ĺ
<u>i arameter</u>	Omto	WICE	DLIN	FIIG	Average	Range	Average	ĺ
Tetrachloroethylene (PCE)	μg/L	5	0.5	0.06	ND	ND	ND	ĺ
Toluene	μg/L	150	0.5	150	ND	ND	ND	Ĺ
trans-1,2-Dichloroethylene (t-1,2-DCE)	μg/L	10	0.5	60	ND	ND	ND	Ĺ
trans-1,3-Dichloropropene	μg/L				ND	ND	ND	Ĺ
Trichloroethylene (TCE)	μg/L	5	0.5	1.7	ND	ND	ND	Ĺ
Trichlorofluromethane (Freon11)	μg/L	150	5	1300	ND	ND	ND	ĺ
Trichlorotrifluoroethane (Freon 113)	μg/L	1200	10	4000	ND	ND	ND	Ĺ
Vinyl Chloride (VC)	μg/L	0.5	0.5	0.05	ND	ND	ND	Ĺ
Xylenes (Total)	μg/L	1750	0.5	1800	ND	ND	ND	Ĺ

					SYNTHETIC ORGANIC CHEMICALS			Married Married		
							RESULTS			
Parameter	Units	MCL	DLR (DL)	PHG			ter Project		ank Wells	
Al-Al-				-		Range	Average	Range	Average	
Alachlor	μg/L	2	1	4		ND	ND	ND	ND	
Atrazine	μg/L	1	0.5	0.15		ND	ND	ND	ND	
Bentazon	μg/L	18	2	200		ND	ND	ND	ND	
Benzo(a)pyrene	μg/L	0.2	0.1	0.007		ND	ND	ND	ND	
Carbofuran	μg/L	18	5	0.7		ND	ND	ND	ND	
Chlordane	μg/L	0.1	0.1	0.03		ND	ND	ND	ND	
2,4-D	μg/L	70	10	20		ND	ND	ND	ND	
Dalapon	μg/L	200	10	790		ND	ND	ND	ND	
Dibromochloropropane (DBCP)	μg/L	0.2	0.01	0.0017		ND	ND	ND	ND	
Di(2-ethylhexyl)adipate	μg/L	400	5	200		ND	ND	ND	ND	
Di(2-ethylhexyl)phthalate	μg/L	4	3	12		ND	ND	ND	ND	
Dinoseb	μg/L	7	2	14		ND	ND	ND	ND	
Diquat	μg/L	20	4	6		ND	ND	ND	ND	
Endothall	μg/L	100	45	94		ND	ND	ND	ND	
Endrin	μg/L	2	0.1	0.3		ND	ND	ND	ND	
Ethylene Dibromide (EDB)	μg/L	0.05	0.02	0.01		ND	ND	ND	ND	
Glyphosate	μg/L	700	25	900		ND	ND	ND	ND	
Heptachlor	μg/L	0.01	0.01	0.008		ND	ND	ND	ND	
Heptachlor Epoxide	μg/L	0.01	0.01	0.006		ND	ND	ND	ND	
Hexachlorobenzene	μg/L	1	0.5	0.03		ND	ND	ND	ND	
Hexachlorocyclopentadiene	μg/L	50	1	2		ND	ND	ND	ND	
Lindane	μg/L	0.2	0.2	0.032		ND	ND	ND	ND	
Methoxychlor	μg/L	30	10	0.09		ND	ND	ND	ND	
Molinate	μg/L	20	2	1		ND	ND	ND	ND	
Oxamyl	μg/L	50	20	26		ND	ND	ND	ND	
Pentachlorophenol	μg/L	1	0.2	0.3		ND	ND	ND	ND	
Picloram	μg/L	500	1	166		ND	ND	ND	ND	
Polychlorinated Biphenyls	μg/L	0.5	0.5	0.09		ND	ND	ND	ND	
Simazine	μg/L	4	1	4		ND	ND	ND	ND	
Thiobencarb (Bolero)	μg/L	70	1	42		ND	ND	ND	ND	
Toxaphene	μg/L	3	i	0.03		ND	ND	ND	ND	
2,3,7,8-TCDD (Dioxin)	pg/L	30	5	0.05		ND	ND	ND	ND	
2.4.5-TP (Silvex)	μg/L	50	1	3		ND	ND	ND	ND	
1,2,3-Trichloropropane	μg/L	0.005	0.005	0.0007		ND	ND	ND	ND	

			DISINFECTION RESIDUAL, PRECURSORS, a	nd BYPROD	UCTS		
Type of Sample(s)	<u>Parameter</u>	Units	MCL/MRDL	DLR	MRDLG	RESU Range	LTS Average
Distribution	Chlorine (as total CI2)	mg/L	4.0		4	0.18 - 2.19	1.15
Treated Water	Total Organic Carbon (TOC)	mg/L	Treatment Requirement	0.3		1.4-3.3	2.1
State Water Project	Total Organic Carbon (TOC)	mg/L	Treatment Requirement	0.3		2.1-5.2	3.2
Distribution	Stage 2 D/DBP Rule Total Trihalomethanes	μg/L	80**	0.5		15-63	49#
Distribution	Stage 2 D/DBP Rule Total Haloacetic Acids	μg/L	60**	0.5		ND - 24	14#
Treated Water	Bromate	µg/L	10 ⁺	1.0			

reated Water Bromate
** Stage 2 D/DBP Rule Total THMs and Total HAAs compliance is based upon Locational Running Annual Averages.
Location with the highest TTHM average

* Compliance is based on the running annual average computed quarterly, of monthly samples, collected at the entrance to the distribution system.