Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml)

Water System Name:	LASSEN COUNTY WATER DISTRICT #1
Water System Number:	CA1810003

The water system named above hereby certifies that its Consumer Confidence Report was distributed on

(date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water.

Certified By:	Name:		
	Signature:		
	Title:		
	Phone Number:	()	Date:

To summarize report delivery used and good-faith efforts taken, please complete the form below by checking all items that apply and fill-in where appropriate:

CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used:

"Good metho	faith" efforts were used to reach non-bill paying customers. Those efforts included the following ds:
	Posted the CCR on the internet at http://
	Mailed the CCR to postal patrons within the service area (attach zip codes used)
	Advertised the availability of the CCR in news media (attach a copy of press release)
	Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of the newspaper and date published)
	Posted the CCR in public places (attach a list of locations)
	Delivery of multiple copies of CCR to single bill addresses serving several persons, such as apartments, businesses, and schools
	Delivery to community organizations (attach a list of organizations)
	Other (attach a list of other methods used)
For sy	stems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site
at the	following address: http://
For in	vestor-owned utilities: Delivered the CCR to the California Public Utilities Commission
	(This form is provided as a convenience and may be used to meet the certification requirement

of section 64483(c), California Code of Regulations.)

2022 Consumer Confidence Report

Water System Name: <u>LASSEN</u> COUNTY WATER DISTRICT #1

Report Date:

March 2023

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2022.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method.

Your water comes from 2 source(s): Well 01 and Well 02

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings are held at Water District Office every second Tuesday of the month at 5:00 pm. *If your meetings are not regularly-scheduled, tell customers how to get information when meetings are announced.

For more information about this report, or any questions relating to your drinking water, please call (530)278-6476 and ask for Bryan Hutchinson or email <u>LCWD@usa.com</u>.

TERMS USED IN THIS REPORT						
Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking	Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.					
water.	Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.					
Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).	Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.					
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California	Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.					
Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial	Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.					
contaminants.	ND: not detectable at testing limit					
Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant	mg/L: milligrams per liter or parts per million (ppm)					
below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of	ug/L: micrograms per liter or parts per billion (ppb)					
disinfectants to control microbial contaminants.	NTU: Nephelometric Turbidity Units					
Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.	umhos/cm: micro mhos per centimeter					

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5 and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER										
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	No. of Samples	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant			
Copper (mg/L)	(2022)	5	0.11	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives			

Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant			
Sodium (mg/L)	(2018)	30	29 - 30	none	none	Salt present in the water and is generally naturally occurring			
Hardness (mg/L)	(2018)	100	99.3 - 101	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring			

Table 3 - DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant			
Arsenic (ug/L)	(2018)	ND	ND - 3	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes			

discharge from fertilizer ar aluminum factories.	Fluoride (mg/L)	(2018) 0	0.2 n/a	2	1	Erosion of natural deposits; wate additive that promotes strong ter discharge from fertilizer and aluminum factories.
--	-----------------	----------	---------	---	---	--

Table 4 - DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant			
Chloride (mg/L)	(2018)	10	n/a	500	n/a	Runoff/leaching from natural deposits; seawater influence			
Color (Units)	(2015)	20	5 - 35	15	n/a	Naturally-occurring organic materials			
Iron (ug/L)	(2018)	1445	1430 - 1460	300	n/a	Leaching from natural deposits; Industrial wastes			
Manganese (ug/L)	(2018)	380	280 - 480	50	n/a	Leaching from natural deposits			
Odor Threshold at 60 °C (TON)	(2015)	1	n/a	3	n/a	Naturally-occurring organic materials.			
Specific Conductance (umhos/cm)	(2018)	353	341 - 364	1600	n/a	Substances that form ions when in water; seawater influence			
Sulfate (mg/L)	(2018)	10.5	1.7 - 19.3	500	n/a	Runoff/leaching from natural deposits; industrial wastes			
Total Dissolved Solids (mg/L)	(2018)	205	190 - 220	1000	n/a	Runoff/leaching from natural deposits			
Turbidity (NTU)	(2015)	2.2	1.5 - 2.8	5	n/a	Soil runoff			
Zinc (mg/L)	(2018)	0.14	0.09 - 0.18	5	n/a	Runoff/leaching from natural deposits			

Table 5 - DETECTION OF UNREGULATED CONTAMINANTS								
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant			
Perfluorooctanesulfonic Acid [PFOS] (ng/L)	(2019)	14	ND - 86	6.5	Perfluorooctanesulfonic acid exposures resulted in immune suppression and cancer in laboratory animals.			

Table 6 - ADDITIONAL DETECTIONS									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant				
Calcium (mg/L)	(2018)	25	20 - 29	n/a	n/a				
Magnesium (mg/L)	(2018)	10	7 - 12	n/a	n/a				
pH (units)	(2018)	7.5	n/a	n/a	n/a				
Alkalinity (mg/L)	(2018)	160	n/a	n/a	n/a				
Aggressiveness Index	(2018)	11.5	11.4 - 11.6	n/a	n/a				
Langelier Index	(2018)	-0.4	-0.40.3	n/a	n/a				

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Lassen County Water District #1* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT							
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language			
Color				Color was found at levels that exceed the secondary MCL. The color MCL was set to protect you against unpleasant aesthetic affects due to color. Violating this MCL does not pose a risk to public health.			
Iron				Iron was found at levels that exceed the secondary MCL. The Iron MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.			
Manganese				Manganese was found at levels that exceed the secondary MCL. The Manganese MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.			

2022 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A Drinking Water Source Assessment was conducted for the WELL01 and WELL 02 of the LASSEN COUNTY WATER

DISTRICT #1 water system in April, 2002.

Well 01 - is considered most vulnerable to the following activities associated with contaminants detected in the water supply: Sewer collection systems Wells - Agricultural/ Irrigation Lagoons/liquid wastes Wastewater treatment plants Crops, nonirrigated [e.g., Christmas trees, grains, grass seeds, hay, Other Animal operations Wells - monitoring, test holes is considered most vulnerable to the following activities not associated with any detected contaminants: Chemical/petroleum processing/storage Historic gas stations Underground storage tanks - Confirmed leaking tanks Well 02 - is considered most vulnerable to the following activities associated with contaminants detected in the water supply: Sewer collection systems Wells - Agricultural/ Irrigation Lagoons/liquid wastes Wastewater treatment plants Crops, nonirrigated [e.g., Christmas trees, grains, grass seeds, hay, Other Animal operations Wells - monitoring, test holes is considered most vulnerable to the following activities not associated with any detected contaminants: Chemical/petroleum processing/storage

- Historic gas stations
- Underground storage tanks Confirmed leaking tanks

Discussion of Vulnerability

Due to the detection of Arsenic, Well 01 is considered vulnerable to activities that may have contributed to or caused the release of Arsenic. In particular, Arsenic is believed to be associated with runoff from orchards, glass and electronics production wastes, and erosion of natural deposits. Arsenic was detected for Well 01 before November 1995 with results reaching up to 11.0 Ug/L compared to the MCL of 50.0 Ug/L; Arsenic was detected again on February 1999 with results reaching up to 3.0 Ug/L. This chemical has been non-detected since February 1999. Due to the detection of Nitrate (as N03) detected in the month of December 1998, and Nitrate + Nitrite (as N) detected in the month of December 1997, Well 01 is considered most vulnerable to activities that may have contributed to or caused the release of Nitrates. Nitrate and Nitrite are associated with runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits. Nitrate (as NO3) has been non-detected since January 2000. Nitrate + Nitrite (as N) has been non-detected since December 1997.

Due to the detection of Nitrate (as NO3) and Nitrate + Nitrite (as N), Well 02 is considered vulnerable to activities that may have contributed to or caused the release of Nitrate (as NO3) and Nitrate + Nitrite (as N). In particular, Nitrate (as NO3) and Nitrate + Nitrite (as N) is believed to be associated with runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits. Nitrate (as NO3) and Nitrate + Nitrite (as N) was detected for Well 02 before December 1995 with results reaching up to 1,403 Ug/L compared to the MCL of 10,000 Ug/L; This chemical was detected various times after December 1995 up until January 2000 after which it has been non-detected.

Acquiring Information

A copy of the complete assessment may be viewed at: SWRCB-Division of Drinking Water - District 02 Lassen 364 Knollcrest Dr Suite 101 Redding, CA 96002

You may request a summary of the assessment be sent to you by contacting: Steve Watson Steve.Watson@waterboards.ca.gov (530) 224-4800

Lassen County Water District #1 Analytical Results By FGL - 2022

LEAD AND COPPER RULE												
	Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples				
Copper		mg/L		1.3	.3			0.11	5			
100 N. Market	CH 2275959-3	mg/L				2022-07-19	0.22					
106 Hwy 299 E	CH 2275959-5	mg/L				2022-07-19	ND					
109 Pine Street	CH 2275959-1	mg/L				2022-07-19	ND					
211 Juniper	CH 2275959-4	mg/L				2022-07-19	ND					
508 Fir Street	CH 2275959-2	mg/L				2022-07-19	ND					

SAMPLING RESULTS FOR SODIUM AND HARDNESS												
			MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Sodium		mg/L		none	none			30	29 - 30			
Well 01	CH 1873019-1	mg/L				2018-05-10	30					
Well 02	CH 1873019-2	mg/L				2018-05-10	29					
Hardness		mg/L		none	none			100.2	99.3 - 101			
Well 01	CH 1873019-1	mg/L				2018-05-10	99.3					
Well 02	CH 1873019-2	mg/L				2018-05-10	101					

PRIMARY DRINKING WATER STANDARDS (PDWS)												
			MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Arsenic		ug/L		10	0.004			ND	ND - 3			
Well 01	CH 1873019-1	ug/L				2018-05-10	3					
Well 02	CH 1873019-2	ug/L				2018-05-10	ND					
Fluoride		mg/L		2	1			0.2	0.2 - 0.2			
Well 01	CH 1873019-1	mg/L				2018-05-10	0.2					
Well 02	CH 1873019-2	mg/L				2018-05-10	0.2					

	SECOND	ARY DRINK	ING WAT	ER STANE	ARDS	(SDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Chloride		mg/L		500	n/a			10	10 - 10
Well 01	CH 1873019-1	mg/L				2018-05-10	10		
Well 02	CH 1873019-2	mg/L				2018-05-10	10		
Color		Units		15	n/a			20	5 - 35
Well 01	CH 1577467-1	Units				2015-09-10	5		
Well 02	CH 1577467-2	Units				2015-09-10	35		
Iron		ug/L		300	n/a			1445	1430 - 1460
Well 01	CH 1873019-1	ug/L				2018-05-10	1430		
Well 02	CH 1873019-2	ug/L				2018-05-10	1460		
Manganese		ug/L		50	n/a			380	280 - 480
Well 01	CH 1873019-1	ug/L				2018-05-10	480		
Well 02	CH 1873019-2	ug/L				2018-05-10	280		
Odor Threshold at 60 °C		TON		3	n/a			1	1 - 1
Well 01	CH 1577467-1	TON				2015-09-10	1		
Well 02	CH 1577467-2	TON				2015-09-10	1		
Specific Conductance		umhos/cm		1600	n/a			353	341 - 364
Well 01	CH 1873019-1	umhos/cm				2018-05-10	364		
Well 02	CH 1873019-2	umhos/cm				2018-05-10	341		
Sulfate		mg/L		500	n/a			10.5	1.7 - 19.3
Well 01	CH 1873019-1	mg/L				2018-05-10	19.3		
Well 02	CH 1873019-2	mg/L				2018-05-10	1.7		
Total Dissolved Solids		mg/L		1000	n/a			205	190 - 220
Well 01	CH 1873019-1	mg/L				2018-05-10	220		

Well 02	CH 1873019-2	mg/L			2018-05-10	190		
Turbidity		NTU	5	n/a			2.2	1.5 - 2.8
Well 01	CH 1577467-1	NTU			2015-09-10	2.8		
Well 02	CH 1577467-2	NTU			2015-09-10	1.5		
Zinc		mg/L	5	n/a			0.14	0.09 - 0.18
Well 01	CH 1873019-1	mg/L			2018-05-10	0.18		
Well 02	CH 1873019-2	mg/L			2018-05-10	0.09		

UNREGULATED CONTAMINANTS												
Units MCLG CA-MCL PHG Sampled Result Avg. Result(a) Range (I												
Perfluorooctanesulfonic Acid [PFOS]		ng/L		NS	n/a			14.3	ND - 86			
Well 01	CH 1990618-1	ng/L				2019-12-12	ND					
Well 01	CH 1978183-1	ng/L				2019-09-12	ND					
Well 01	CH 1974369-1	ng/L				2019-06-13	ND					
Well 02	CH 1990618-2	ng/L				2019-12-12	86					
Well 02	CH 1978183-2	ng/L				2019-09-12	ND					
Well 02	CH 1974369-2	ng/L				2019-06-13	ND					

ADDITIONAL DETECTIONS											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Calcium		mg/L			n/a			25	20 - 29		
Well 01	CH 1873019-1	mg/L				2018-05-10	20				
Well 02	CH 1873019-2	mg/L				2018-05-10	29				
Magnesium		mg/L			n/a			10	7 - 12		
Well 01	CH 1873019-1	mg/L				2018-05-10	12				
Well 02	CH 1873019-2	mg/L				2018-05-10	7				
pH		units			n/a			7.5	7.5 - 7.5		
Well 01	CH 1873019-1	units				2018-05-10	7.5				
Well 02	CH 1873019-2	units				2018-05-10	7.5				
Alkalinity		mg/L			n/a			160	160 - 160		
Well 01	CH 1873019-1	mg/L				2018-05-10	160				
Well 02	CH 1873019-2	mg/L				2018-05-10	160				
Aggressiveness Index					n/a			11.5	11.4 - 11.6		
Well 01	CH 1873019-1					2018-05-10	11.4				
Well 02	CH 1873019-2					2018-05-10	11.6				
Langelier Index					n/a			-0.4	-0.40.3		
Well 01	CH 1873019-1					2018-05-10	-0.4				
Well 02	CH 1873019-2					2018-05-10	-0.3				

Lassen County Water District #1 CCR Login Linkage - 2022

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
100 N Market	CH 2275959-3	2022-07-19	Metals, Total	100 N. Market	Lead & Copper Monitoring
106 Hwy 299 E	CH 2275959-5	2022-07-19	Metals, Total	106 Hwy 299 E	Lead & Copper Monitoring
109 PINE	CH 2275959-1	2022-07-19	Metals, Total	109 Pine Street	Lead & Copper Monitoring
211 Juniper	CH 2275959-4	2022-07-19	Metals, Total	211 Juniper	Lead & Copper Monitoring
508 FIR ST	CH 2275959-2	2022-07-19	Metals, Total	508 Fir Street	Lead & Copper Monitoring
DIST OFFICE	CH 2270648-1	2022-01-26	Coliform	District Office	Bacteriological Monitoring
DIST OFF	CH 2270905-1	2022-02-21	Coliform	District Office	Bacteriological Monitoring
DIST OFFICE	CH 2271754-1	2022-03-21	Coliform	District Office	Bacteriological Monitoring
	CH 2272405-1	2022-04-18	Coliform	District Office	Bacteriological Monitoring
	CH 2273675-1	2022-05-23	Coliform	District Office	Bacteriological Monitoring
	CH 2274623-1	2022-06-20	Coliform	District Office	Bacteriological Monitoring
	CH 2275876-1	2022-07-19	Coliform	District Office	Bacteriological Monitoring
	CH 2276967-1	2022-08-17	Coliform	District Office	Bacteriological Monitoring
DIST OFF	CH 2277958-1	2022-09-21	Coliform	District Office	Bacteriological Monitoring
DIST OFFICE	CH 2278772-1	2022-10-19	Coliform	District Office	Bacteriological Monitoring
	CH 2279643-1	2022-11-16	Coliform	District Office	Bacteriological Monitoring
	CH 2290340-1	2022-12-21	Coliform	District Office	Bacteriological Monitoring
Manes Dom #2	CH 2271752-1	2022-03-21	Coliform	Manes Dom #2	Lassen County Water District #1
Well 01	CH 1577467-1	2015-09-10	Wet Chemistry	Well 01	Drinking Water Monitoring
	CH 1873019-1	2018-05-10	Metals, Total	Well 01	Drinking Water Monitoring
	CH 1873019-1	2018-05-10	General Mineral	Well 01	Drinking Water Monitoring
	CH 1974369-1	2019-06-13		Well 01	PFOS & PFOA Monitoring
	CH 1978183-1	2019-09-12		Well 01	PFOS & PFOA Monitoring
	CH 1990618-1	2019-12-12		Well 01	PFOS & PFOA Monitoring
Well 02	CH 1577467-2	2015-09-10	Wet Chemistry	Well 02	Drinking Water Monitoring
	CH 1873019-2	2018-05-10	Metals, Total	Well 02	Drinking Water Monitoring
	CH 1873019-2	2018-05-10	General Mineral	Well 02	Drinking Water Monitoring
	CH 1974369-2	2019-06-13		Well 02	PFOS & PFOA Monitoring
	CH 1978183-2	2019-09-12		Well 02	PFOS & PFOA Monitoring
	CH 1990618-2	2019-12-12		Well 02	PFOS & PFOA Monitoring