2021 Consumer Confidence Report

Water System Information

Water System Name: J. G. Boswell Company Water System - Kern Tomato

Report Date: 5/31/2022

Type of Water Source(s) in Use: Groundwater – treated; Bottled water for consumption.

Name and General Location of Source(s): 36889 Highway 58, Well 01 (South), Well 03 (New North)

Drinking Water Source Assessment Information: N/A

Time and Place of Regularly Scheduled Board Meetings for Public Participation: N/A

For More Information, Contact: Dayah Cervantes (559) 992-2141

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2021 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse J. G. Boswell Company Water System a (559) 992-2141 para asistirlo en español.

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Terms Used in This Report

Term	Definition
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
N/A	Not applicable.
ppm	parts per million or milligrams per liter (mg/L)
ррb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ррд	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Complete if bacteria are detected.

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	(In the year) 0	0	(a)	0	Human and animal fecal waste

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 1.A. Compliance with Total Coliform MCL between January 1, 2021 and June 30, 2021 (inclusive)

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria	(In a month) 1	0	1 positive monthly sample (a)	0	Naturally present in the environment
Fecal Coliform and <i>E. coli</i>	(in the year) 0	0	0	None	Human and animal fecal waste

(a) For systems collecting fewer than 40 samples per month: two or more positively monthly samples is a violation of the total coliform MCL.

 Table 2. Sampling Results Showing the Detection of Lead and Copper

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	рнс	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead (µg/L)	6/11/19	5	1.6	0	15	0.2	0	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (mg/L)	6/11/19	5	0.0785	0	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Table 3. Sampling Results for Sodium and Hardness

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (mg/L)	7/29/21	90.5	61-120	None	None	Salt present in the water and is generally naturally occurring
Hardness (mg/L)	7/29/21	44	24-64	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Arsenic* (µg/L)	2021	15.89	5.7-29	10	0.004	Erosion of natural deposits; residue from some surface water treatment processes
Barium (mg/L)	4/16/2019, 6/26/2020	0.034	0.0095- 0.059	1	2	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Chlorine (mg/L)	2021	0.56	0.33-0.88	[MRDL = 4.0 (as C1 ₂)]	[MRDL = 4.0 (as C1 ₂)]	Drinking water disinfectant added for treatment
Fluoride (mg/L)	7/15/2019	0.375	0.24-0.51	2.0	1	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Gross Alpha (Pci/L)	2021	1.31	ND-4.83	15	0	Erosion of natural deposits
Mercury (µg/L)	4/16/2019, 6/26/2020	ND	ND	2	1.2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and cropland
Nitrate (as nitrogen, N) (mg/L)	2021	1.582	0.73-2.3	10	10	Runoff and leaching from fertilizer use;

						leaching from septic tanks and sewage; erosion of natural deposits
Nitrite (as nitrogen, N) (mg/L)	4/16/2019, 6/26/2020	0.105	ND-0.21	1	1	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
TTHM Trihalomethanes (µg/L)	10/1/2019, 6/26/20120	ND	ND	80	N/A	Byproduct of drinking water disinfection
Haloacetic Acids (µg/L)	8/27/2019, 10/22/2019	1.45	ND-2.9	60	N/A	Byproduct of drinking water disinfection
1,2,3- Trichloropropane [TCP] (µg/L)	2021	ND	ND	0.005	0.0007	Discharge from industrial and agricultural chemical factories; leaching from hazardous waste sites; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides.

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Chloride (mg/L)	7/29/21	82	44-120	500	N/A	Runoff/leaching from natural deposits; seawater influence
Sulfate (mg/L)	7/29/21	90	50-130	500	N/A	Runoff/leaching from natural deposits; industrial wastes
Specific Conductance (µS/cm)	7/29/21	583	379-787	1600	N/A	Substances that form ions when in water; seawater influence
Total Dissolved Solids (mg/L)	7/29/21	430	280-580	1000	N/A	Runoff/leaching from natural deposits

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [Enter Water System's Name] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

State Revised Total Coliform Rule (RTCR): This Consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements during 2021. These revisions add the requirements of the federal Revised Total Coliform Rule, effective since April 1, 2016, to the existing state Total Coliform Rule. The revised rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E. coli bacteria). The U.S. EPA anticipates greater public health protection as the rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system. The state Revised Total Coliform Rule became effective July 1, 2021.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
Arsenic	Exceeded MCL		Treatment system devices have been approved and installed. Bottled water is provided for human consumption.	See below.

Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement

Monitoring requirement for coliform bacteria	Failed to collect routine sample	February 2021	Two bacteriological samples were collected in January 2021 with negative results. Two bacteriological samples were taken in March 2021 and also tested negative for total coliform.	We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not your drinking water meets health standards. During February 2021, we did not monitor or test for coliform and therefore, cannot be sure of the quality of your drinking water during that time.
Monitoring requirement for coliform bacteria	Failed to collect routine sample	December 2021	A bacteriological sample was collected on 1/6/22. The result was negative for total coliform bacteria; Public notification	We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not your drinking water meets health standards. During December 2021, we did not monitor or test for coliform and therefore, cannot be sure of the quality of your drinking water during that time.
Monitoring requirement for arsenic	Failed to conduct arsenic monitoring of the POE treatment units	December 2021	POE units were sampled for arsenic on 1/6/22 and 2/2/22 - all results were ND; Updated O&M plan; Public notification	We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not your drinking water meets health standards. During December 2021, we did not complete all monitoring or testing for arsenic and therefore, cannot be sure of the quality of your drinking water during that time.

Arsenic above 10 ppb: Your drinking water from the wells may not meet the current EPA standard for arsenic; it does contain low levels of arsenic. Prior to January 23, 2006, the federal MCL for Arsenic was 50 ppb, after January 23, 2006 the new federal MCL for Arsenic of 10 ppb went into effect. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and

circulatory problems. Point of Use treatment devices have been installed and approved by the Division of Drinking Water. Your primary source of drinking water is bottled water distributed by DS Waters of America under various brand names.

For Water Systems Providing Groundwater as a Source of Drinking Water

	Table 8.	Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples	i
--	----------	--	---

Microbiological Contaminants (complete if fecal- indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	(In the year) 0	2021	0	(0)	Human and animal fecal waste
Enterococci	(In the year) 0		ТТ	N/A	Human and animal fecal waste
Coliphage	(In the year) 0		TT	N/A	Human and animal fecal waste

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Violation of a Groundwater TT

Special Notice of Fecal Indicator-Positive Groundwater Source Sample: Not applicable.

Special Notice for Uncorrected Significant Deficiencies: Not applicable.

Table 9. Violation of Groundwater TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
No violations.	N/A	N/A	N/A	N/A

Summary Information for Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements

Level 1 or Level 2 Assessment Requirement not Due to an E. coli MCL Violation

A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination

may enter the drinking water distribution system. We did not find coliforms indicating the need to look for potential problems in water treatment or distribution. Should this occur, we would be required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

Level 2 Assessment Requirement Due to an E. coli MCL Violation

A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. *E. coli* are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely-compromised immune systems. We did not find *E. coli* bacteria, indicating the need to look for potential problems in water treatment or distribution. Should this occur, we would be required to conduct assessment(s) identify problems and to correct any problems that were found during these assessments.