2024 Consumer Confidence Report

Water System Information

Water System Name: J. G. Boswell Company Water System – Kern Ranch

Report Date: June 20, 2025

Type of Water Source(s) in Use: Groundwater – treated; Bottled water for consumption.

Name and General Location of Source(s): 21101 Bear Mountain Blvd. Bakersfield, CA 93311

Drinking Water Source Assessment Information: N/A

Time and Place of Regularly Scheduled Board Meetings for Public Participation: N/A

For More Information, Contact: Dayah Cervantes (559) 762-3227

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2024, and may include earlier monitoring data.

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse J. G. Boswell Company Water System – Kern Ranch a 21101 Bear Mountain Blvd. Bakersfield, CA 93311 para asistirlo en español.

Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 J. G. Boswell Company Water System – Kern Ranch 以获得中文的帮助: 21101 Bear Mountain Blvd. Bakersfield, CA 93311 (661) 327-3551.

Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa J. G. Boswell Company Water System – Kern Ranch and 21101 Bear Mountain Blvd. Bakersfield, CA 93311 o tumawag sa (661) 327-3551 para matulungan sa wikang Tagalog.

Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ J. G. Boswell Company Water System – Kern Ranch tại 21101 Bear Mountain Blvd. Bakersfield, CA 93311 để được hỗ trợ giúp bằng tiếng Việt.

Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau J. G. Boswell Company Water System – Kern Ranch ntawm 21101 Bear Mountain Blvd. Bakersfield, CA 93311 rau kev pab hauv lus Askiv.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ppq	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	(In the year) 0	0	(a)	0	Human and animal fecal waste

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 2. Sampling Results Showing the Detection of Lead and Copper

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	Range of Results	AL	PHG	Typical Source of Contaminant
Lead (ppb)	6/2/22	5	0	0	0-0	15	0.2	Corrosion of household plumbing systems; Erosion of natural deposits
Copper (ppm)	6/2/22	5	0.495	0	0.0039 - 0.83	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Table 3. Sampling Results for Sodium and Hardness

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	7/2/08	110	110	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	7/2/08	85	85	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

		1			<u> </u>	
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Arsenic* (µg/L)	2024	19.025	17-22.2	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Fluoride* (mg/L)	2024	3.19	2.91-3.37	2	2.0	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Barium (mg/L)	7/10/2023	0.049	0.049	1	2	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Chlorine (mg/L)	2024	0.5	0.5	[MRDL = 4.0 (as C1 ₂)]	[MRDL = 4.0 (as C1 ₂)]	Drinking water disinfectant added for treatment
Gross Alpha (Pci/L)	7/10/2023	14.4	14.4	15	0	Erosion of natural deposits
TTHM Trihalomethanes (μg/L)	8/2/2022	67	67	80	N/A	Byproduct of drinking water disinfection
Haloacetic Acids (μg/L)	8/2/2022	18	18	60	N/A	Byproduct of drinking water disinfection
1,2,3- Trichloropropane [TCP] (µg/L)	10/8/24	ND	ND	5	0.7	Discharge from industrial and agricultural chemical factories; leaching from hazardous waste sites; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides.

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Chloride (ppm)	7/2/08	14	14	500	N/A	Runoff/leaching from natural deposits; seawater influence
Iron (ppb)	7/2/08	90	90	300	N/A	Leaching from natural deposits; industrial wastes
Manganese (ppb)	7/2/08	12	12	50	N/A	Leaching from natural deposits
Zinc (ppm)	7/2/08	0.39	0.39	5.0	N/A	Runoff/leaching from natural deposits; industrial wastes
Sulfate (ppm)	7/2/08	180	180	500	N/A	Runoff/leaching from natural deposits; industrial wastes
Specific Conductance	7/2/08	618	618	1600	N/A	Substances that form ions when in water; seawater influence

Table 6. Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
N/A					

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead: Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. J. G. Boswell Company Water System – Kern Ranch is responsible for providing high quality drinking water and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your

family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. The water system has completed a service line inventory and confirmed that no lead service lines are present. A copy of the inventory is available at the water system office during normal business hours. However, if you are concerned about lead in your water and wish to have your water tested, contact J. G. Boswell Company Water System – Kern Ranch and Dayah Cervantes (559) 762-3227. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead.

Arsenic above 10 ppb: Your drinking water from the wells may not meet the current EPA standard for arsenic; it does contain low levels of arsenic. Prior to January 23, 2006, the federal MCL for Arsenic was 50 ppb, after January 23, 2006 the new federal MCL for Arsenic of 10 ppb went into effect. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. *Point of Use treatment devices have been installed and approved by the Division of Drinking Water to meet the federal and state standards. Your primary source of drinking water is bottled water distributed by DS Waters of America under various brand names.*

Fluoride above 2 ppm: Your drinking water from the well does not meet the current EPA standard for Fluoride. The standard balances the current understanding of Fluoride's possible health effects against the costs of removing Fluoride from drinking water. Some people who drink water containing fluoride in excess of the federal MCL of 4 mg/L over many years may get bone disease, including pain and tenderness of the bones. Children who drink water containing fluoride in excess of the state MCL of 2 mg/L may get mottled teeth. Your water system currently provides bottled water for drinking in lieu of the source water (well). Point of Use treatment devices have been installed and approved by the Division of Drinking Water. Your primary source of drinking water is bottled water distributed by DS Waters of America under various brand names.

State Revised Total Coliform Rule (RTCR): This Consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements during 2021. These revisions add the requirements of the federal Revised Total Coliform Rule, effective since April 1, 2016, to the existing state Total Coliform Rule. The revised rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E. coli bacteria). The U.S. EPA anticipates greater public health protection as the rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system. The state Revised Total Coliform Rule became effective July 1, 2021.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
No violations in 2024.				

For Water Systems Providing Groundwater as a Source of Drinking Water

Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples

Microbiological Contaminants (complete if fecal- indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	(In the year) 0	2024	0	(0)	Human and animal fecal waste
Enterococci	(In the year) 0	2024	TT	N/A	Human and animal fecal waste
Coliphage	(In the year)	2024	TT	N/A	Human and animal fecal waste

Summary Information for Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements

Level 1 or Level 2 Assessment Requirement not Due to an E. coli MCL Violation

A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We did not find coliforms indicating the need to look for potential problems in water treatment or distribution. Should this occur, we would be required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

Level 2 Assessment Requirement Due to an E. coli MCL Violation

A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. *E. coli* are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely-compromised immune systems. We did not find *E. coli* bacteria, indicating the need to look for potential problems in water treatment or distribution. Should this occur, we would be required to conduct assessment(s) identify problems and to correct any problems that were found during these assessments.