2021 Consumer Confidence Report

Water System Information

Water System Name: Valley Estates Association of Property Owners, Inc.

Report Date: June 7, 2022

Type of Water Source(s) in Use: Wells

Name and General Location of Source(s): Marjorie Street Well/Hanning Street Well

Drinking Water Source Assessment Information: Prepared August 2002 by California Department of Health. Report is available by contacting Mike Higgins (760) 378-1028. See attachments for report summaries

Time and Place of Regularly Scheduled Board Meetings for Public Participation: 6:30 PM the second Tuesday of each month except Jun, Jul, Aug and Dec at the Valley Estates Community Center 14213 Allen Ave., Weldon, CA 93283

For More Information, Contact: Mike Higgins (760) 378-1028

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2021 and may include earlier monitoring data.

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse [Enter Water System's Name] a [Enter Water System's Address or Phone Number] para asistirlo en español.

Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 [Enter Water System Name]以获得中文的帮助: [Enter Water System's Address][Enter Water System's Phone Number].

Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa [Enter Water System's Name and Address] o tumawag sa [Enter Water System's Phone Number] para matulungan sa wikang Tagalog.

Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ [Enter Water System's Name] tại [Enter Water System's Address or Phone Number] để được hỗ trợ giúp bằng tiếng Việt.

Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau [Enter Water System's Name] ntawm [Enter Water System's Address or Phone Number] rau kev pab hauv lus Askiv.

SWS CCR

	Terms	Used	in	This	Report
--	-------	------	----	------	--------

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ppq	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Complete if bacteria are detected.

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	(In the year) 0	0	(a)	0	Human and animal fecal waste

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 1.A. Compliance with Total Coliform MCL between January 1, 2021 and June 30, 2021 (inclusive)

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria	(In a month) 0	[Enter No.] 0	1 positive monthly sample (a)	0	Naturally present in the environment
Fecal Coliform and <i>E. coli</i>	(in the year) 0	[Enter No.] 0	0	None	Human and animal fecal waste

(a) For systems collecting fewer than 40 samples per month: two or more positively monthly samples is a violation of the total coliform MCL

For violation of the total coliform MCL, include potential adverse health effects, and actions taken by water system to address the violation: [Enter information]

Table 2. Sampling Results Showing the Detection of Lead and Copper

Complete if lead or copper is detected in the last sample set.

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	рнс	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead (ppb)	[Enter Date] 9/14/2020	[Enter No.] 5	[Enter No.] 0.002	[Enter No.] 0	15	0.2	[Enter No.] 0	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	[Enter Date] 9/14/2020	[Enter No.] 5	[Enter No.] 0.175	[Enter No.] 0	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Table 3. Sampling Results for Sodium and Hardness

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	03/21/2021		32-34	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	03/21/2021		140-160	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

 Table 4. Detection of Contaminants with a Primary Drinking Water Standard <u>Refer to</u>

 <u>Attachments for these results</u>

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
[Enter	[Enter	[Enter	[Enter	[Enter	[Enter	[Enter Source]
Contaminant]	Date]	No.]	Range]	No.]	No.]	
[Enter	[Enter	[Enter	[Enter	[Enter	[Enter	[Enter Source]
Contaminant]	Date]	No.]	Range]	No.]	No.]	
[Enter	[Enter	[Enter	[Enter	[Enter	[Enter	[Enter Source]
Contaminant]	Date]	No.]	Range]	No.]	No.]	

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard <u>Refer to</u> <u>Attachments for these results</u>

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
[Enter	[Enter	[Enter	[Enter	[Enter	[Enter	[Enter Source]
Contaminant]	Date]	No.]	Range]	No.]	No.]	
[Enter	[Enter	[Enter	[Enter	[Enter	[Enter	[Enter Source]
Contaminant]	Date]	No.]	Range]	No.]	No.]	
[Enter	[Enter	[Enter	[Enter	[Enter	[Enter	[Enter Source]
Contaminant]	Date]	No.]	Range]	No.]	No.]	

Table 6. Detection of Unregulated Contaminants Refer to Attachments for these results

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
[Enter Contaminant]	[Enter Date]	[Enter No.]	[Enter Range]	[Enter No.]	[Enter Language]
[Enter Contaminant]	[Enter Date]	[Enter No.]	[Enter Range]	[Enter No.]	[Enter Language]
[Enter Contaminant]	[Enter Date]	[Enter No.]	[Enter Range]	[Enter No.]	[Enter Language]

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Valley Estates POA is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Fable 7. Violation of a MC	L, MRDL, AL,	TT or Monitoring	Reporting Requirement
----------------------------	--------------	------------------	-----------------------

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
None	N/A	N/A	N/A	N/A

For Water Systems Providing Groundwater as a Source of Drinking Water

Table 8.	Sampling	Results	Showing	Fecal	Indicator-	Positive	Groundwater	Source	Samples

Microbiological Contaminants (complete if fecal- indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	0	N/A	0	(0)	Human and animal fecal waste
Enterococci	0	N/A	TT	N/A	Human and animal fecal waste
Coliphage	0	N/A	ТТ	N/A	Human and animal fecal waste

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Violation of a Groundwater TT

Special Notice of Fecal Indicator-Positive Groundwater Source Sample: None

Special Notice for Uncorrected Significant Deficiencies: None

Table 9. Violation of Groundwater TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
None	N/A	N/A	N/A	N/A

Refer to the following pages for exhibits and attachments.

California Drinking Water Source Assessment and Protection (DWSAP) Program

District Name	DHS Tehachapi District	District No. 19	County _	Kern	
System Name	VALLEY ESTATES POA, INC.			System No.	1500478
Source Name	WELL 01 - MARJORIE (OLD)	Source No.	002	PS Code 15	00478-002
Completed by	DHS Tehachapi District		Da	te August, 2002	
According to I Groundwater	DHS records, this Source is Gro System Method.	undwater. This Asse	ssment was	done using the De	əfault

100 March 100 March		
of the	VALLEY ESTATES POA, INC.	wate

er system in August, 2002

The source is considered most vulnerable to the following activities associated with contaminants detected in the water supply:

> Septic systems - high density [>1/acre] Grazing [> 5 large animals or equivalent per acre] Housing - high density [>1 house/0.5 acres]

The source is considered most vulnerable to the following activities not associated with any detected contaminants:

> Transportation corridors - Roads/Streets Wells - Water supply

Discussion of Vulnerability

Concentrations of arsenic, radiation and nitrate greater than the detection limit for purposes of reporting (DLR) but less than the primary drinking water standard have been detected in water produced by this source.

A copy of the complete assessment may be viewed at:

Valley Estates POA **PO Box 328** 14213 Allen Ave. Weldon, CA 93283

You may request a summary of the assessment be sent to you by contacting:

Mike Higgins - Water Master 5413 Marjorie St. Weldon, CA 93283 (760) 378-1028

California Drinking Water Source Assessment and Protection (DWSAP) Program

District Name	DHS Tehachapi District	District No. 19	County	Kern	
System Name	VALLEY ESTATES POA, INC.			System No.	1500478
Source Name	WELL 02 - HANNING (NEW)	Source No.	001	PS Code 15	00478-001
Completed by	DHS Tehachapi District		Di	ate August, 2002	
Completed by	DHS Tehachapi District	undwator This Asso	Di	te August, 2002	afault
According to I	DHS records, this Source is Gro	undwater. This Asse	ssment wa	s done using the De	əfault

A source	ce water as	ssessment v	vas con	ducted	for the _V	VELL 0	2 - HA	NNING (NEW)		
of the	VALLEY	ESTATES P	POA, IN	С.				water system in	August, 2002	_·
-		2010	~	1.1.1			i.			

The source is considered most vulnerable to the following activities associated with contaminants detected in the water supply:

> Septic systems - high density [>1/acre] Grazing [> 5 large animals or equivalent per acre] Housing - high density [>1 house/0.5 acres]

The source is considered most vulnerable to the following activities not associated with any detected contaminants:

Wells - Water supply

Discussion of Vulnerability

In addition to the PCA's listed in the vulnerability summary this source is also considered to be vulnerable to the following activities:

Transportation corridors - Roads/Streets

Concentrations of nitrate and radiation greater than the detection limit for purposes of reporting (DLR) but less than the primary drinking water standard have been detected in water produced by this source.

A copy of the complete assessment may be viewed at:

Valley Estates POA PO Box 328 14213 Allen Ave Weldon, CA 93283

You may request a summary of the assessment be sent to you by contacting:

Mike Higgins - Water Master 5413 Marjorie St. Weldon, CA 93283 (760) 378-1028

Marjorie Well Water Test Results

GROUP/AN	ALYTE	LAST	LESS	REPORTIN	COUNTING	UOM	MCL	DLR	LAST SAMPLE	FREQ MON	NEXT SAMPLE DUE	NOTES
VALLEY ES	STATES POA,					WELL 01 -	MARJORIE	E (OLD)				
INC. SECONDA	RY/GP											
1928	ALKALINI TY, BICARBO NATE	220		0.000	0	MG/L			3/25/2021	36	2024/03	
1919	CALCIUM	50		0.100	0	MG/L			3/10/2021	36	2024/03	
1929	ALKALINI TY, CARBONA TE		2.5	2.500	0	MG/L			3/25/2021	36	2024/03	
1017	CHLORID E	16		0.500	0	MG/L	500		3/10/2021	36	2024/03	
1905	COLOR	2		1.000	0	UNITS	15		3/10/2021	36	2024/03	
1022	COPPER, FREE		<	10.000	0	UG/L	1000	50	3/10/2021	36	2024/03	
2905	FOAMING AGENTS (SURFACT ANTS)		<	0.100	0	MG/L	0.5		3/10/2021	36	2024/03	
1915	HARDNES S, TOTAL (AS CACO3)	160		0.500	0	MG/L			3/10/2021	36	2024/03	
1021	HYDROXI DE AS CALCIUM CARBONA TE		1.4	1.400	0	MG/L			3/7/2018	36	2024/03	
1028	IRON		<	50.000	0	UG/L	300	100	3/10/2021	36	2024/03	
1031	MAGNESI UM	8.7		0.050	0	MG/L			3/10/2021	36	2024/03	
1032	MANGAN ESE		<	10.000	0	UG/L	50	20	3/10/2021	36	2024/03	
1920	ODOR		<	1.000	0	TON	3	1	3/10/2021	36	2024/03	
1925	PH	7.95		0.050	0				3/10/2021	36	2024/03	
1050	SILVER		<	10.000	0	UG/L	100	10	3/10/2021	36	2024/03	
1052	SODIUM	34		0.500	0	MG/L			3/10/2021	36	2024/03	

GROUP/AI	NALYTE	LAST	LESS	REPORTIN	COUNTING	UOM	MCL	DLR	LAST SAMPLE	FREQ MON	NEXT SAMPLE DUE	NOTES
VALLEY E	STATES POA,					WELL 01 ·	MARJORI	E (OLD)				
SECOND	ARY/GP											
1064	CONDUCT IVITY @ 25 C UMHOS/C M	487		1.000	0	US	1600		3/10/2021	36	2024/03	
1055	SULFATE	39		1.000	0	MG/L	500	0.5	3/10/2021	36	2024/03	
1930	TDS	310		20.000	0	MG/L	1000		3/10/2021	36	2024/03	
0100	TURBIDIT Y	0.26		0.100	0	NTU	5	0.1	3/10/2021	36	2024/03	
1095	ZINC		<	50.000	0	UG/L	5000	50	3/10/2021	36	2024/03	
INORG	ANIC											
1002	ALUMINU M		<	50.000	0	UG/L	1000	50	3/10/2021	36	2024/03	
1074	ANTIMON Y, TOTAL		<	2.000	0	UG/L	6	6	3/10/2021	36	2024/03	
1005	ARSENIC		<	2.000	0	UG/L	10	2	3/10/2021	36	2024/03	
1094	ASBESTO S		<	0.200	0	MFL	7	0.2	4/11/2013	108	2022/04	DUE NOW
1010	BARIUM	53		10.000	0	UG/L	1000	100	3/10/2021	36	2024/03	
1075	BERYLLIU M, TOTAL		<	1.000	0	UG/L	4	1	3/10/2021	36	2024/03	
1015	CADMIUM		<	1.000	0	UG/L	5	1	3/10/2021	36	2024/03	
1020	CHROMIU M		<	10.000	0	UG/L	50	10	3/10/2021	36	2024/03	
1025	FLUORID	0.76		0.050	0	MG/L	2	0.1	3/10/2021	36	2024/03	
1035	MERCURY		<	0.200	0	UG/L	2	1	3/10/2021	36	2024/03	
1036	NICKEL		<	10.000	0	UG/L	100	10	3/10/2021	36	2024/03	
1039	PERCHLO RATE		<	4.000	0	UG/L	6	4	12/16/2020	36	2023/12	
1045	SELENIU M		<	2.000	0	UG/L	50	5	3/10/2021	36	2024/03	
1085	THALLIU M, TOTAL		<	1.000	0	UG/L	2	1	3/10/2021	36	2024/03	

GROUP/ANA	ALYTE	LAST	LESS	REPORTIN	COUNTING	UOM	MCL	DLR	LAST SAMPLE	FREQ MON	NEXT SAMPLE DUE	NOTES
VALLEY ES	STATES POA,					WELL 01 -	MARJORIE	(OLD)				
SECUNDAI	RT/GP											
NITRATE	E/NITRITE											
1040	NITRATE	1.7		0.100	0	mg/L	10	0.4	3/16/2022	12	2023/03	
1041	NITRITE		<	0.050	0	mg/L	1	0.4	3/10/2021	36	2024/03	
RADIOL	OGICAL											
4109	GROSS ALPHA PARTICLE ACTIVITY	9.77		0.800	1.19	PCI/L	15	3	6/17/2020	36	2023/06	
4006	COMBINE D URANIUM	5.39		1.000	0	PCI/L	20	1	6/17/2020	36	2023/06	
REGULA	TED VOC											
2981	1,1,1- TRICHLO ROETHAN E		<	0.500	0	UG/L	200	0.5	11/7/2018	72	2024/11	
2988	1,1,2,2- TETRACH LOROETH ANE		<	0.500	0	UG/L	1	0.5	11/7/2018	72	2024/11	
2985	1,1,2- TRICHLO ROETHAN E		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11	
2978	1,1- DICHLOR OETHANE		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11	
2977	1,1- DICHLOR OETHYLE NE		<	0.500	0	UG/L	6	0.5	11/7/2018	72	2024/11	
2378	1,2,4- TRICHLO ROBENZE NE		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11	
2968	O- DICHLOR OBENZEN E		<	0.500	0	UG/L	600	0.5	11/7/2018	72	2024/11	

GROUP/AN/	ALYTE	LAST	LESS	REPORTIN	COUNTING	UOM	MCL	DLR	LAST SAMPLE	FREQ MON	NEXT SAMPLE DUE	NOTES
VALLEY ES INC.	STATES POA,					WELL 01 -	MARJORIE	E (OLD)				
SECONDAI	RY/GP											
2980	1,2- DICHLOR OETHANE		<	0.500	0	UG/L	0.5	0.5	11/7/2018	72	2024/11	
2983	1,2- DICHLOR OPROPAN E		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11	
2413	1,3- DICHLOR OPROPEN E		<	0.500	0	UG/L	0.5	0.5	11/7/2018	72	2024/11	
2969	P- DICHLOR OBENZEN E		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11	
2990	BENZENE		<	0.500	0	UG/L	1	0.5	11/7/2018	72	2024/11	
2982	CARBON TETRACH LORIDE		<	0.500	0	UG/L	0.5	0.5	11/7/2018	72	2024/11	
2380	CIS-1,2- DICHLOR OETHYLE NE		<	0.500	0	UG/L	6	0.5	11/7/2018	72	2024/11	
2964	DICHLOR OMETHAN E		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11	
2992	ETHYLBE NZENE		<	0.500	0	UG/L	300	0.5	11/7/2018	72	2024/11	
2251	METHYL TERT- BUTYL ETHER		<	0.500	0	UG/L	13	3	11/7/2018	72	2024/11	
2989	CHLOROB ENZENE		<	0.500	0	UG/L	70	0.5	11/7/2018	72	2024/11	
2996	STYRENE		<	0.500	0	UG/L	100	0.5	11/7/2018	72	2024/11	
2987	TETRACH LOROETH YLENE		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11	
2991	TOLUENE		<	0.500	0	UG/L	150	0.5	11/7/2018	72	2024/11	

GROUP/AN	ALYTE	LAST	LESS	REPORTIN	COUNTING	UOM	MCL	DLR	LAST SAMPLE	FREQ MON	NEXT SAMPLE DUE	NOTES
VALLEY E INC.	STATES POA,					WELL 01	- MARJORIE	(OLD)				
SECONDA	RY/GP											
2979	TRANS- 1,2- DICHLOR OETHYLE NE		<	0.500	0	UG/L	10	0.5	11/7/2018	72	2024/11	
2984	TRICHLO ROETHYL ENE		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11	
2218	TRICHLO ROFLUOR OMETHAN E		<	0.500	0	UG/L	150	5	11/7/2018	72	2024/11	
2904	TRICHLO ROTRIFLU OROETHA NE		<	0.500	0	UG/L	1200	10	11/7/2018	72	2024/11	
2976	VINYL CHLORID E		<	0.500	0	UG/L	0.5	0.5	11/7/2018	72	2024/11	
2955	XYLENES, TOTAL		<	0.500	0	UG/L	1750	0.5	11/7/2018	72	2024/11	
REGUL	ATED SOC											
2414	1,2,3- TRICHLO ROPROPA NE		<	0.000	0	UG/L	0.005	0.005	11/7/2018	72	2024/11	
2050	ATRAZINE		<	0.300	0	UG/L	1	0.5	12/16/2020	72	2026/12	
2037	SIMAZINE		<	0.300	0	UG/L	4	1	12/16/2020	72	2026/12	

Hanning Well Water Test Results

GC	GROUP/AN	ALYTE	LAST RESULT	LESS THAN	REPORTIN G LEVEL	COUNTING ERROR (±)	UOM	MCL	DLR	LAST SAMPLE	FREQ MON THS	NEXT SAMPLE DUE	NOTES
	VALLEY	(ESTATES					WELL 02	2 - HANN	ING (NEV	V)			
GP	SECON	DARY/GP											
-	1928	ALKALINI TY, BICARBO NATE	210		0.000	0	MG/L			3/25/2021	36	2024/03	
	1919	CALCIUM	44		0.100	0	MG/L			3/10/2021	36	2024/03	
•	1929	ALKALINI TY, CARBONA TE		2.5	2.500	0	MG/L			3/25/2021	36	2024/03	
	1017	CHLORID E	13		0.500	0	MG/L	500		3/10/2021	36	2024/03	
	1905	COLOR	1		1.000	0	UNITS	15		3/10/2021	36	2024/03	
-	1022	COPPER, FREE		<	10.000	0	UG/L	1000	50	3/10/2021	36	2024/03	
•	2905	FOAMING AGENTS (SURFACT ANTS)		<	0.100	0	MG/L	0.5		3/10/2021	36	2024/03	
	1915	HARDNES S, TOTAL (AS CACO3)	140		0.500	0	MG/L			3/10/2021	36	2024/03	
	1021	HYDROXI DE AS CALCIUM CARBONA TE		1.4	1.400	0	MG/L			3/25/2021	36	2024/03	
	1028	IRON	750		50.000	0	UG/L	300	100	3/10/2021	36	2024/03	
	1031	MAGNESI UM	8.3		0.050	0	MG/L			3/10/2021	36	2024/03	
	1032	MANGAN ESE		<	10.000	0	UG/L	50	20	3/10/2021	36	2024/03	
	1920	ODOR		<	1.000	0	TON	3	1	3/10/2021	36	2024/03	
	1925	PH	8		0.050	0				3/10/2021	36	2024/03	
	1050	SILVER		<	10.000	0	UG/L	100	10	3/10/2021	36	2024/03	
	1052	SODIUM	32		0.500	0	MG/L			3/10/2021	36	2024/03	

ec	GPOUP/AN		LAST	I FSS	PEPOPTIN	COUNTING	ПОМ	MCI		LAST SAMPLE	FREO MON THS	NEXT SAMPLE DUE	NOTES
GC	GROOP/AN	ALIIL	RESULT	THAN	G LEVEL	ERROR (±)		MCL				NEXT SAMPLE DOL	NOTES
	VALLEY	ESTATES					WELL 02	- HANNI	NG (NEV	V)			
	1064	CONDUCT IVITY @ 25 C UMHOS/C M	475		1.000	0	US	1600		3/10/2021	36	2024/03	
	1055	SULFATE	43		1.000	0	MG/L	500	0.5	3/10/2021	36	2024/03	
	1930	TDS	320		20.000	0	MG/L	1000		3/10/2021	36	2024/03	
-	0100	TURBIDIT Y	1.1		0.100	0	NTU	5	0.1	3/10/2021	36	2024/03	
	1095	ZINC		<	50.000	0	UG/L	5000	50	3/10/2021	36	2024/03	
ю	INORGANIC												
	1002	ALUMINU M		<	50.000	0	UG/L	1000	50	3/10/2021	36	2024/03	
	1074	ANTIMON Y, TOTAL		<	2.000	0	UG/L	6	6	3/10/2021	36	2024/03	
	1005	ARSENIC		<	2.000	0	UG/L	10	2	3/10/2021	36	2024/03	
	1094	ASBESTO S		<	0.200	0	MFL	7	0.2	10/10/2012	108	2021/10	DUE NOW
-	1010	BARIUM	36		10.000	0	UG/L	1000	100	3/10/2021	36	2024/03	
-	1075	BERYLLIU M, TOTAL		<	1.000	0	UG/L	4	1	3/10/2021	36	2024/03	
	1015	CADMIUM		<	1.000	0	UG/L	5	1	3/10/2021	36	2024/03	
-	1020	CHROMIU M		<	10.000	0	UG/L	50	10	3/10/2021	36	2024/03	
	1025	FLUORID E	0.78		0.050	0	MG/L	2	0.1	3/10/2021	36	2024/03	
	1035	MERCURY		<	0.200	0	UG/L	2	1	3/10/2021	36	2024/03	
	1036	NICKEL		<	10.000	0	UG/L	100	10	3/10/2021	36	2024/03	
	1039	PERCHLO RATE		<	4.000	0	UG/L	6	4	12/16/2020	36	2023/12	
	1045	SELENIU M		<	2.000	0	UG/L	50	5	3/10/2021	36	2024/03	
	1085	THALLIU M, TOTAL		<	1.000	0	UG/L	2	1	3/10/2021	36	2024/03	

GC	GROUP/ANA	LYTE	LAST RESULT	LESS THAN	REPORTIN G LEVEL	COUNTING ERROR (±)	UOM	MCL	DLR	LAST SAMPLE	FREQ MON THS	NEXT SAMPLE DUE	NOTES
	VALLEY	ESTATES					WELL 02	- HANN	ING (NE)	N)			
NI	NITRATE/NITRITE												
-	1040	NITRATE	2.4		0.100	0	mg/L	10	0.4	3/16/2022	12	2023/03	
	1041	NITRITE		<	0.050	0	mg/L	1	0.4	3/10/2021	36	2024/03	
RA	RADIOLOGICAL												
	4109	GROSS ALPHA PARTICLE ACTIVITY	7.42		0.800	1.08	PCI/L	15	3	6/17/2020	36	2023/06	
	4006	COMBINE D URANIUM	5.5		1.000	0	PCI/L	20	1	6/17/2020	36	2023/06	
S1	REGULATED VOC												
	2981	1,1,1- TRICHLO ROETHAN E		<	0.500	0	UG/L	200	0.5	11/7/2018	72	2024/11	
	2988	1,1,2,2- TETRACH LOROETH ANE		<	0.500	0	UG/L	1	0.5	11/7/2018	72	2024/11	
	2985	1,1,2- TRICHLO ROETHAN E		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11	
-	2978	1,1- DICHLOR OETHANE		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11	
	2977	1,1- DICHLOR OETHYLE NE		<	0.500	0	UG/L	6	0.5	11/7/2018	72	2024/11	
	2378	1,2,4- TRICHLO ROBENZE NE		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11	
	2968	O- DICHLOR OBENZEN E		<	0.500	0	UG/L	600	0.5	11/7/2018	72	2024/11	

iC	GROUP/ANA	YTE	LAST RESULT	LESS THAN	REPORTIN G LEVEL	COUNTING ERROR (±)	UOM	MCL	DLR	LAST SAMPLE	FREQ MON THS	NEXT SAMPLE DUE	NOTES
	VALLEY	ESTATES					WELL 02	- HANNI	NG (NEV	V)			
	2980	1,2- DICHLOR OETHANE		<	0.500	0	UG/L	0.5	0.5	11/7/2018	72	2024/11	
	2983	1,2- DICHLOR OPROPAN E		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11	
	2413	1,3- DICHLOR OPROPEN E		<	0.500	0	UG/L	0.5	0.5	11/7/2018	72	2024/11	
	2969	P- DICHLOR OBENZEN E		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11	
	2990	BENZENE		<	0.500	0	UG/L	1	0.5	11/7/2018	72	2024/11	
	2982	CARBON TETRACH LORIDE		<	0.500	0	UG/L	0.5	0.5	11/7/2018	72	2024/11	
	2380	CIS-1,2- DICHLOR OETHYLE NE		<	0.500	0	UG/L	6	0.5	11/7/2018	72	2024/11	
	2964	DICHLOR OMETHAN E		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11	
	2992	ETHYLBE NZENE		<	0.500	0	UG/L	300	0.5	11/7/2018	72	2024/11	
	2251	METHYL TERT- BUTYL ETHER		<	0.500	0	UG/L	13	3	11/7/2018	72	2024/11	
	2989	CHLOROB ENZENE		<	0.500	0	UG/L	70	0.5	11/7/2018	72	2024/11	
	2996	STYRENE		<	0.500	0	UG/L	100	0.5	11/7/2018	72	2024/11	
	2987	TETRACH LOROETH YLENE		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11	
	2991	TOLUENE		<	0.500	0	UG/L	150	0.5	11/7/2018	72	2024/11	

GC	GROUP/ANA	LYTE	LAST RESULT	LESS THAN	REPORTIN G LEVEL	COUNTING ERROR (±)	UOM	MCL	DLR	LAST SAMPLE	FREQ MON THS	NEXT SAMPLE DUE	NOTES	
	VALLEY	ESTATES					WELL 02 - HANNING (NEW)							
	2979	TRANS- 1,2- DICHLOR OETHYLE NE		<	0.500	0	UG/L	10	0.5	11/7/2018	72	2024/11		
	2984	TRICHLO ROETHYL ENE		<	0.500	0	UG/L	5	0.5	11/7/2018	72	2024/11		
	2218	TRICHLO ROFLUOR OMETHAN E		<	0.500	0	UG/L	150	5	11/7/2018	72	2024/11		
	2904	TRICHLO ROTRIFLU OROETHA NE		<	0.500	0	UG/L	1200	10	11/7/2018	72	2024/11		
	2976	VINYL CHLORID E		<	0.500	0	UG/L	0.5	0.5	11/7/2018	72	2024/11		
	2955	XYLENES, TOTAL		<	0.500	0	UG/L	1750	0.5	11/7/2018	72	2024/11		
S2	REGULA	TED SOC												
	2414	1,2,3- TRICHLO ROPROPA NE		<	0.000	0	UG/L	0.005	0.005	11/7/2018	72	2024/11		
	2050	ATRAZINE		<	0.300	0	UG/L	1	0.5	12/16/2020	72	2026/12		
	2037	SIMAZINE		<	0.300	0	UG/L	4	1	12/16/2020	72	2026/12		