ATTACHMENT 7

Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Board's website at http://www.waterboards.ca.gov/drinking water/certlic/drinkingwater/CCR.shtml)

Wate	r Sys	tem Name:	Edgemo	nt Acres Mutual \	Water Co.			
Wate	r Sys	tem Number:	1500290					
Further	r, the	system certific monitoring da	date) to comes that the	ustomers (and ap information cont	propriate notice ained in the rep	es of availal ort is correc	Leport was distribut bility have been g at and consistent wi control Board, Division	iven). th the
Certif	fied b	y: Name:		Todd Amon	> \/	1		
		Signatu	ıre:	200	4/1/			
		Title:		Board Presiden				
		Phone	Number:	(760) 769-4764		Date:	9/11/2019	
	ised: Good						ose efforts included	
			CR on the	Internet at www.				
ĺ				stal patrons within		a (attach zip	codes used)	
				ility of the CCR in		_	-	
ļ		Publication o	f the CCF		paper of genera	al circulation	n (attach a copy o	f the
1		Posted the CC	CR in publ	ic places (attach a	list of locations	s)		
[Delivery of mas apartments	ultiple co , businesse	pies of CCR to si es, and schools	ngle-billed addr	esses servin	ng several persons,	such
[Delivery to co	mmunity	organizations (att	ach a list of orga	anizations)		
[Other (attach	a list of ot	her methods used)			
☐ F	or sy	stems serving a lowing address	at least 10 s: www	00,000 persons: F	osted CCR on a	a publicly-ac	ccessible internet si	te at
\Box F	or pr	ivately-owned	utilities: I	Delivered the CCI	R to the Californ	ia Public Ut	tilities Commission	

This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c), California Code of Regulations.

2018 Consumer Confidence Report

Water System Name: Edgemont Acres Mutual Water Co R

Report Date: September 11, 2019

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2014 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.

Type of water source(s) in use: Antelope Valley East Kern Water Agency Aqueduct System

Name & general location of source(s): AVEK Kern County System

Drinking Water Source Assessment information: Available at Company Office and online at

http://avek.org/index.cfm?fuseaction=menu&menu_id=5008

Time and place of regularly scheduled board meetings for public participation: 5:00pm and 4th Wednesday each

Month at the company office at 16638 Vista Del Oro, North Edwards

For more information, contact: Todd Amon

Phone: (760)769-4764

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (µg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial
 processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural
 application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Table 1 lists all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

TABLE 1 -	TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA												
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of months in violation	MCL	MCLG	Typical Source of Bacteria								
Total Coliform Bacteria	(In a mo.)	0	More than 1 sample in a month with a detection	0	Naturally present in the environment								
Fecal Coliform or E. coli	(In the year)	0	A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or E. coli	0	Human and animal fecal waste								

	Analysis	MCL	
Chemical	Results	G/L	DLR G/L
Regulated Or	ganic Chemicals		
Bromodichloromethane	1.6		.5
Bromoform	14.0		.5
Chloroform (Trchloromethane)	ND		.5
Dibromochloromethane	7.4		.5
Total Trihalomethanes (TTHMs)	23.0		.5
Regulated Or	ganic Chemicals		
Monochloroacetic Acid (MCAA)	ND		2.0
Dichloroacetic Acid (DCAA)	ND		1.0
Trichloroacetic Acid (TCAA)	ND		1.0
Monobromoacetic Acid (MBAA)	ND		1.0
Dibromoacetic Acid (DBAA)	4.7		1.0
Haloacetic Acids (five)(HAA5)	4.7		2.0
Source: ST2S1 "16863 Foothill Ave"	8/13/18		

	Analysis	MCL	
Chemical	Results	G/L	DLR G/L
Regulated Or	ganic Chemicals		
Bromodichloromethane	1.8		.5
Bromoform	16.0		.5
Chloroform (Trchloromethane)	ND		.5
Dibromochloromethane	8.2		.5
Total Trihalomethanes (TTHMs)	26.0		
Regulated Org	ganic Chemicals		
Monochloroacetic Acid (MCAA)	ND		2.0
Dichloroacetic Acid (DCAA)	ND		1.0
Trichloroacetic Acid (TCAA)	ND		1.0
Monobromoacetic Acid (MBAA)	ND		1.0
Dibromoacetic Acid (DBAA)	5.1		1.0
Haloacetic Acids (five)(HAA5)	5.1		2.0
Source: ST2S2 "16976 Hillcrest Ave"	8/13/18		

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement: NONE

Antelope Valley-East Kern Water Agency 2018 Annual Water Quality Report - Kern County System

The Antelope Valley-East Kern Water Agency also provides chlorinated groundwater as an alternative source of drinking water.

Treatment technique: Chlorination

EPA Groundwater Rule: AVEK meets the requirements of the Groundwater Rule by providing a minimum of 4-log reduction of viruses by continously providing a minimum free chlorine residual of 0.5 mg/L leaving the clearwell.

Lowest single free chlorine residual measurement during the year: 0.79 Number of violations of the Groundwater Rule: NONE

				MIC	ROBIOLOGICA	L CONTAMINA	NTS						
Type of Sample(s)	Paran	neter	Sampling	Frequency		MCL.		No. of Month	No. of Months in Violation			n Results	
Distribution	Distribution Total Coliform Bacteria		56 - 70 / mp			5% positive		None			Range 0%	Average 0%	
Distribution	E. c			70 / mo	1 p	os. with 2 TC p	.30	None			0%	0%	
INORGANIC CONTAMINANTS													
RESULTS Rosamond Plant Water Bank													
					Plant Efflu			nt (Sources)	Effluent	, ,		/ells	
Parameter	Units	MCL	DLR	PHG	Range	Average	Range	Average	Range	Average	Range	Average	
Aluminum	hâ\ſ"	1000	50	600	ND-150	84	ND	ND			ND	ND	
Antimony	μg/L	6	6	1		ND	ND	ND		4.0	ND	ND	
Arsenic	μg/L	10	2	0.004		5.0	2.0-8.8	4.8	3.4-5.6	4.3	2.4-18	5.0	
Barium	μ β /Γ	1000	100	2000		ND	32-100	62			36-90	65	
Beryllium	μg/L	4	1	1		ND	ND	ND			ND	ND	
Cadmium	μg/L	5	1	0.04		ND	ND	ND			ND	ND	
Chromium (Total)	μg/L	50	10			ND	ND-16	6.0			ND	ND	
Chromium (Hexavalent)	hây	-	1	0.02		3.3	0.80-15	7.7			1.5-6.1	3.1 ND	
Cyanide	μg/L	150	100	150		ND	ND	ND			ND		
Fluoride Lead	mg/L	2	0.1	1		0.20	0.17-0.33	0.23			0.14-0.30 ND-1.1	0.20	
	μg/L	15	5.0	0.2		ND	ND-0.59	0.10					
Mercury Nickel	μg/L	2 100	1	1.2		ND	ND	ND			ND-6.9 ND-15	1.1 3.1	
	μg/L		10 0.4	12		ND	ND	ND 2.6			1.5-4.4	3.3	
Nitrate (as N)	mg/L	10		10		3,4	0.86-4.2 ND	ND			ND	ND	
Nitrite (as N)	mg/L	10	0.4	40		ND	0.86-4.2	2.7			1.5-4.4	3.3	
Nitrate+Nitrite (as N) Perchlorate	mg/L	6	4	10		3.4 ND	ND-0.43	0.11			1.5-4.4 N□	ND	
Selenium	μg/L	50	5	30		ND ND	ND-10	2.7			ND-9.7	2.8	
Thallium	μg/L ug/l	າ	1	0.1		ND DN	ND-10	ND ND			ND-9.7	ND	
11(GHU)))	µg/L	*There is curren	thy no MCI for		mium The eres				ontomber 11 20	117	IND	ND	

^{*}There is currently no MCL for hexavalent chromium. The previous MCL of 0.010 mg/L was withdrawn on Soptember 11, 2017.

Antelope Valley-East Kern Water Agency 2018 Annual Water Quality Report - Kern County System

GENERAL PHYSICAL AND SECONDARY STANDARDS

		RESULTS									
						ond Plant		Water Bank			
Domeston	4				ent (CWR)		it (Sources)	Effluent	(CWR)	l w	ells
<u>Parameter</u> Aluminum	Units	MCL	DLR	Range	Average	Range	Average	Range	Average	Range	Average
Calcium	μg/L	1000	50	ND-150	84	ND	ND			ND	ND
Chloride	mg/L	no standard			75	26-110	70			30-110	63
	rng/L	250		1	60	40-130	72			51-110	79
Color	Units	15		<5	<5	<5	<5			<5	<5
Copper	µg/L	1000	50		ND	ND-6.6	2.6			ND-7.1	2.9
Foaming Agents (MBAS)	mg/L	0.5			ND	ND	ПD			ND	ND
Hardness (Total) as CaCO3	mg/L	no standard			220	89-340	220			150-330	234
Iron	μg/L	300	100		ND	ND-130	42			ND-160	29
Magnesium	mg/L	no standard			8.7	5.8-16	11			4.6-13	9.2
Manganese	μg/L	50	20		ND	ND-5.1	1.4		1	ND-6.4	1.0
Odor @ 60 C	Units	3	1	<1	<1	<1	<1			<1	<1
pH	Units	no standard		7.3-8.4	7.93	7.3-8.1	7.60		1	7.3-7.7	7.53
Silver	μg/L	100	10		ND	ND	ND			ND	ND ND
Sodium	mg/L	no standard			44	36-53	48			33-55	43
Specific Conductance	μmhos	900		600-610	600	430-930	650			480-830	680
Sulfate	mg/L	250	0.5	505 516	50	39-100	66				
Thiobencarb (Bolero)	μg/L	1	1		ND	ND	ND			36-92	59
Methyl tert-Butyl Ether (MTBE)	μg/L	5	3		ND	ND	ND			ND	ND
Total Dissolved Solids	mg/L	500			360	270-600	410		- 1	ND	ND
Turbidity	Units	5		0.01-0.25	0.08	0.08-0.72	0.28			280-560	420
Zing	µg/L	5000	50	0.01-0.23	ND ND	ND-40	6.7			0.02-3.77	0.78
Total Alkalinity (as CaCO3)	mg/L	no standard	30		160	93-180			1	ND	ND
Bicarbonate Alkalinity(as HCO3)	mg/L	no standard			190	110-220	140 170		1	140-200	160
Carbonate (as CO3)	mg/L	no standard	1						1	170-220	190
Hydroxide (as OH)	mg/L	no standard			2.0 ND	ND	ND			ND	ND
. A manual data and	-ng/c	IN GIGHTON	1		ND	ND	ND			ND	ND

					RESULTS							
Parameter	Units	MCL	DLR	PHG		ond Plant ent Sources		r Bank ells				
Gross Alpha Gross Beta Strontkim 90 Tribum Uranium Radium 228 Radium 226	pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L	15 50 8 20,000 20	3 4 2 1,000 1 1 1	0.35 400 0.43 0.019 0.05	Range ND-3.4 ND-4.1 ND ND ND ND	Average 1.7 2.7 ND ND 6.3 ND ND	Range ND-5.0 ND-4.8 ND ND 3.1-7.1 ND-0.66 ND-0.35	Average 1.2 2.8 ND ND 5.0 0.14 0.17				

VOLATILE ORGANIC CONTAMINANTS

						RES	ULTS	
					Rosamo	ond Plant	Wate	r Bank
D					Raw Influe	nt (Sources)	W	ells
Parameter	Units	MCL	DLR	PHG	Range	Average	Range	Average
1,1,1-Trichlorethane (1,1,1-TCA)	μg/L	200	0.5	1000	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	μg/L	1	0.5	0.1	NĐ	ND	ND	ND
1,1,2-Trichloroethane (1,1,2-TCA)	µg/L	5	0.5	0.3	ND	ND	ND	ND I
1,1-Dichloroethane (1,1-DCA)	μg/L	5	0.5	3	ND	ПD	ND	ND
1,1-Dichloroethylene (1,1-DCE)	μg/t.	6	0.5	10	ND	NĐ	ND	ND
1,2,4-Trichlorobenzene	µg/L	5	0.5	5	ND	ND	ND	ND
1,2-Dichlorobenzene (o-DCB)	μg/L	600	0.5	600	ND	ND	ND	ND
								,,,,

Anteloge Valley-East Kern Water Agency 2018 Annual Water Quality Report - Kern County System

					Rosamo	ind Plant		r Bank
					Raw Influer	nt (Sources)	W	ells
Parameter	Units	MCL	DLR	PHG	Range	Average	Range	Average
1,2-Dichloroethane (1,2-DCA)	μgAL	0.5	0.5	0.4	ND	ND	ND	ND
1,2-Dichloropropane	μg/L.	5	0.5	0.5	ND	מא	ND	ND
1,3-Dichforopropene (Total)	µg/L	0.5	0.5	0.2	ND	ND	ND	ND
1,4-Dichlorobenzene (p-DCB)	μg/L	5	0.5	. 6	ND	ND	ND	ND
Benzene	µg/L	1	0.5	0.15	ND	ND	ND	ND
Carbon tetrachloride	ug/L	0.5	0.5	0.1	ND	ND	ND	ND
cis-1,2-Dichloroethylene (c-1,2-DCE)	µg/L.	6	0.5	100	ND	ND	ND	ND
cis-1,3-Dichleropropene	µg/L				ND	ND	ND	ND
Dichloromethane (Methylene Chloride)	µg/L	5	0.5	4	ND	ND	ND	ND
Ethylbenzene	µg/L	300	0.5	300	ND	ND	ND	ND
Methyl-tert-butyl ether (MTBE)	μg/L	13	3	13	ND	ND	ND	ND
Monochtorobenzene (Chlorobenzene)	µg/L	70	0.5	70	ND	ND	ND	ND
Styrene	μg/L	100	0.5	0.5	ND	ND	ND	ND
Tetrachloroathylene (PCE)	μg/L	5	0.5	0.06	ND	ND	ND	ND
Toluene	μg/L	150	0.5	150	ND	МĎ	ND	ND
trans-1,2-Dichloroethylene (t-1,2-DCE)	μg/L	10	0.5	60	ND	ND	ND	ND
trans-1,3-Dichloropropene	μg/L				ND	ND	ND	ND
Trichloroethylene (TCE)	µg/L	5	0.5	1.7	ND	ND	ND	ND
Trichlorofluromethane (Freon11)	μg/L	150	5	1300	ND	ND	ND	ND
Trichlorotrifluoroethane (Freon 113)	μg/L	1200	10	4000	ND	ND	ND	ND
Vinyl Chloride (VC)	μg/L	0.5	0.5	0.05	ND	NĎ	ND	ND
Xylenes (Total)	µg/L	1750	0.5	1800	ND	ND	ND	ND
• •	-							

SYNTHETIC ORGANIC CHEMICALS

	SYNTHETIC ORGANIC CHEMICALS							
						RES		2
					Raw Influer	nt (Sources)	Water B	ank Wells
Parameter	Units	MCL	DLR (DL)	PHG	Range	Average	Range	Average
Alachlor	μg/L	2	1	4	ND	ИD	ND	ND
Atrazine	μg/L	1	0.5	0.15	ND	ПD	ND	ND
Bentazon	μg/L	18	2	200	ND	ИD	ND	ND
Benzo(a)pyrene	μg/L	0.2	0.1	0.007	ND	ND	ND	ND
Carbofuran	μg/L	18	5	0.7	ND	ND	ND	ND
Chlordane	μg/L	0.1	0.1	0.03	ND	ND	ND	ND
2,4-D	μg/L	70	10	20	ND	ND	ND	ND
Dalapon	μg/L	200	10	790	ND	ND	ND	ND
Dibromochloropropane (DBCP)	μg/L	0.2	0.01	0.0017	ND	ND	ND	ND
Di(2-ethylhexyl)adipate	μg/L	400	5	200	ND	ND	ND	ND I
Di(2-ethylhexyl)phthalate	μg/L	4	3	12	ND	ND	ND	ND
Dinoseb	µg/L	7	2	14	ND	ND	ND	ND
Diguat	µg/L	20	4	6	ND	ND	ND	ND
Endothall	μg/L	100	45	94	ND	ND	ND	ND
Endrin	μg/L	2	0.1	0.3	ND	ND	ND	ND
Ethylene Dibromide (EDB)	μg/L	0.05	0.02	0.01	ND	ND	ND	ND
Glyphosate	µg/L.	700	25	900	ND	ND	ND	ND
Heptachlor	μg/L	0.01	0.01	0.008	ND	ND	ND	ND
Heptachlor Epoxide	μg/L	0.01	0.01	0.006	ND	ФИ	ND	ND
Hexachlorobenzene	μg/L	1	0.5	0.03	ND	ND	ND	ND
Hexachlorocyclopentadiene	μg/L	50	1	2	ND	ND	ND	ND
Lindane	µg/L	0.2	0.2	0.032	ND	ND	NĐ	ND
Methoxychlor	µg/L	30	10	0.09	ND	ND	ND	ND
Molinate	µg/L	20	2	1	ND	ND	ND	ND
Oxamyl	μg/L.	50	20	26	ND	ND	ND	ND
Pentachlorophenol	μg/L	1	0.2	0.3	ND	ND	ND	ND
Picloram	µg/L	500	1	166	ND	ND	ND	ND

Antelope Valley-East Kern Water Agency 2018 Annual Water Quality Report - Kern County System

					Raw Influer	nt (Sources)	Water B	ank Wells
Parameter	<u>Units</u>	MCL	DLR (DL)	PHG	Range	Average	Range	Average
Polychlorinated Biphenyls	μg/L	0.5	0.5	0.09	ND	ND	ND	ND
Simazine	μg/L	4	1	4	ND	ND	ND	ND
Thiobencarb (Bolero)	μg/L	70	1	42	ND	ND	ND	ND
Toxaphene	μg/L	3	1	0.03	ND	ND	ND	ND
2,3,7,8-TCDD (Dioxin)	pg/L	30	5	0.05	ND	ND	ND	ND
2,4,5-TP (Silvex)	µg/L	50	1	3	ND	ND	ND	ND
1.2,3-Trichleropropane	μg/L	0.005	0.005	0.0007	ND	ND	ND	ND

DISINFECTION RESIDUAL, PRECURSORS, and BYPRODUCTS

Type of Sample(s)	Parameter	Units	MCLMRDL	DLR	MRDLG	RESI	JLTS
			- COMMISSION OF THE PERSON OF	2000	TO 2 10 10 10 10 10 10 10 10 10 10 10 10 10	Range	Average
Distribution	Chlorine (as total CI2)	mg/L	4.0**		4	0.00-1.70	1.06
Treated Water	Total Organic Carbon (TOC)	mg/L	Treatment Requirement	0.3		0.5-0.8	0.6
Source Water	Total Organic Carbon (TOC)	mg/L	Treatment Requirement	0.3		0.5-0.7	0.6
Distribution	Stage 2 D/DBP Rule Total Trihal	omethanes ug/L	80**			18-44	28#
Distribution	Stage 2 D/DBP Rule Total Halos		60**			3.3-7.0	5.0#
Treated Water	Bromate	· -	10*	£			
Treated Franci	DIOMBIC	μg/L	10	Ð			**

^{**} Running Annual Average of distribution system samples. The MCLs are based upon Running Annual Averages. Stage 2 D/DBP Rule Total THMs and Total HAAs compliance is based upon Locational Running Annual Averages. # Location with the highest TTHM average

DEFINITIONS and FOOTNOTES:

Plant Effluent, CWR, is finished, treated drinking water.

Raw Water is the Source Water, the California Aqueduct or wells, prior to treatment.

Units: mg/l. = milligrams per liter, parts per million (ppn)

pg/l. = picograms per liter, parts per quadrillion (ppq)

pmhos = micromhos, a measure of specific conductance

µmihos ≈ micromhos, a measure of specific conductance
pciCL = pico Curies per liter
< ≈ Less than
> = greater khan
ND = none detected above the DLR
NTU = nephelometric turbidity unit is a measure of the clerity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.
NCL: Maximum Contaminant Level. The highest level of a contaminant that is allowed in drinking water. MCLs are set by the US Environmental Protection Agency or the State Water Resources Control Board as close to the PHGs and MCLGs as is economically or technologically feesible.
MRDL: Maximum Residual Distribectant Level. The level of a distribectant added for water treatment that may not exceeded at the consumer's tap.
□ □ P. Detection Limit for curinspase of Renorting

MRDLG: Maximum Residual Disinfectant Level. The level of a disinfectant social for water treatment that may not exceeded at the consumer a tep.

DLR: Delection Limit for purposes of Reporting.

(DL): Delection limit determined by the Laboratory when no DLR has been established.

MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

MRDLG: Maximum Residual Disinfectant Level Goal. The level of a disinfectant added for water freatment below which there is no known or expected risk to health. MRDLGs are set by the U.S. Environmental Protection Agency.

Protection Agency.

PHG: Public Health Goal. The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Office of Environmental Health Hazard Primary Drinking Water Standard: Primary MCLs, specific treatment techniques adopted in lieu of primary MCLs, and monitoring and reporting requirements for MCLs that are specified in regulations.

Secondary Standards: Aesthetic standards established by the State Water Resources Control Board.

All analyses performed by ELAP certified laboratories: AVEK Water Agency, Eurofins Eaton Analytical Laboratories, or Eurofins subcontract lab.

^{*} Compliance is based on the running annual average computed quarterly, of monthly samples, collected at the entrance to the distribution system.

STAGE 2 DISINFECTION BYPRODUCT RULE TOTAL TRIHALOMETHANE (TTHM) AND HALOACETIC ACIDS (HAA5) QUARTERLY SUMMARY REPORT

			Monitorin	TTHM (ppb)			HAAS (ppb) Monitoring Periods					
		MP1 (3 qtrs ago)	MP2 (2 qtrs ago)	MP3 (last qtr)	MP4 (current qtr)	OEL	LRAA	MP1 (3 qtrs ago)	MP2 (2 qtrs ago)	MP3 (last qtr)	MP4 (current qtr)	OEL	LRAA
	imple Date>	02/15/18	05/17/18	08/16/18	11/15/18			2/15/18	5/17/18	8/16/18	11/15/18		ļ
1	EAFB	24	42	26	13	26.0	27.5	4.4	6.6	4.6	3.3	4.5	4.7
2	Boron	24	44	26	18	26.5	28.0	4.5	7.0	5.0	3.4	4.7	5.0
3						0.0						0.0	
4						0.0						0.0	
5						0.0	9					0.0	100
						0.0				. anima		0.0	h :
,						0.0						0.0	
8	996-9-			dant		0.0		AZZIRNO TALA CIRRARIO			1	0.0	
		Stage 1 Cotto	illance (RAA)=	27.8	YES	-	1	Stare 1 Com	ollance (RAA)#	4.9	YES		

- Please begin by filling out your water system name and number.
 Enter the name of the Stage 2 sample site at the left of each row used.
- 3. Fill in the date of the current monitoring period under the THM Section on the left. The same date will automatically appear under the same monitoring period in the HAAS section on the right. Use the following date format: mm/dd/yy.
- 4. Under the date entered, place the TTHM result for each sample station on the left hand side and do the same for HAAS results on the right hand side.
- 5. The Operational Evaluation Level (OEL) and Locational Running Annual Average (LRAA) will automatically be calculated if you're using this form electronically. Please keep the previous three quarters of data on the sheet to allow these colculations to work. For example, if you're completed four quarters of monitoring and are on to the Lst quarter of the next year, leave the 2nd, 3rd and 4th quarters from the previous year and replace the data from the lirst quarter of last year with the 1st quarter data from the current year. If you are not using this form electronically, the equations for the OEL and LRAA are located at the bottom of the page.
- 6. Sign and date the report

OEL = Operational Evaluation Level = ((2*MP1)+MP2+MP3)/4 LRRA = Locational Running Annual Average = (MP1+MP2+MP3+MP4)/4

MP1=3 Quarters Ago MP2 = 2 Quarters Ago

MP3 = Last Quarter MP4 = Current Quarter

Quarterly Bromate Report for Disinfection Byproducts Compliance (in $\mu g/L$ or ppb)

Site 1 - Bromate 0.0		h Qtr.	41			d Qtr.	310			d Qtr.	2n			t Qtr.	1s			17	20		
Site 1 - Bromate	Quarte	12/12	11/14	10/10		9/12	8/8			6/13	5/9	4/11		3/14	2/14	1/10	4th Q	3rd Q	Suq Q	151 Q	Sample Date (month/date):
Meets Standard?* (check box) Meets Standard?* (check box) Yes Yes No No No Comments: Ozone off all quarter		OFF					OFF	OFF	0.0	OFF	OFF	OFF	0.0	OFF	OFF	OFF	0.0	0.0	0.0	0.0	Site 1 - Bromate
Meets Standard?* (check box) Yes Yes Yes Yes No No No No No No No N	1			-	. 1				00	-			00				0.0				Running Annual Average
(check box) Identify the sample locations in the table below. Site Sample Location Comments: Ozone off all quarter	0.0				0.0				0.0			-	0.0								
Identify the sample locations in the table below. Site Sample Location Comments: Ozone off all quarter	Yes V								Yes 🗸									· · · · · · · · · · · · · · · · · · ·			
Confinence of all qualter	110		المحتصاد															N.	voled ak	the lab	Identify the sample locations in
1 Rosamond Clear Well Reservoir							rter	all qua	zone off a	ents: C	Comm	1						ocation			Site
													Į.							eservoir	1 Rosamond Clear Well Re
												- 1									
								1													
Signature Date								Į.			and the same of the same of										

*If, during the first year of monitoring, any individual quarter's average will cause the running annual average of that system to exceed the standard, then the system is out of compliance at the end of that quarter.

Quarterly Report for Disinfectant Residuals Compliance For Systems Using Chlorine or Chloramines

System Name:	Antelope Valley-East Kern Water Agency	System No.:		1510053
Calendar Year:	2018	Quarter	4TH	

Г		1st Quarter	
	Month	Number of Samples Taken	Monthly Ave. Chlorine Level (mg/L)
Г	April		1,18
Year	May		1.23
	June		1 32
	July		1.22
	August		1.16
Prev	September		1.20
	October		1,13
	November		1.16
	December		1.15
ä	January	70	1.16
unten Year	February	56	1.19
Onn	March	56	1.22
Ri	unning Annual	Average (RAA):	1.19
	eets standard? e. RAA < MRDL	of 4.0 mg/L as Cl2)	YES

Г		2nd Quarter	
	Month	Number of Samples Taken	Monthly Ave. Chlorine Level (mg/L)
Г	July		1.22
Previous Year	August		1.16
	September		1.20
	October		1.13
	November	1 1	1.16
	December		1.15
Ī	January	1	1.16
35	February	1	1.19
Curtent Year	March		1.22
aren	April	56	1.14
o	May	70	1.05
	June	56	0.89
R	unning Annual A	Average (RAA):	1.14
	eets standard? . RAA < MRDL o	of 4.0 mg/L as CI2)	YES

		3rd Quarter	
	Month	Number of Samples Taken	Monthly Ave. Chlorine Level (mg/L)
¥.	October		1.13
Previous	November		1.10
bud	December		1.1
	January		1.10
	February		1.19
	March	1	1.23
124	April		1.14
Current ?	May		1.0
Cert	June		0,89
	July	70	0.94
	August	56	1.08
	September	56	1.06
R	unning Annual	Average (RAA):	1.10
	eets standard? RAA < MRDL	of 4.0 mg/L as Cl2)	YES

		4th Quarter	
	Month	Number of Samples Taken	Monthly Ave. Chlorine Level (mg/L)
Г	January		1.16
	February		1.19
	March		1.22
	April		1.14
<u>,,</u>	May		1.05
Jument Year	June		0.89
Intern	July		0.94
Ü	August		1.08
	September		1.05
	October	70	0.99
	November	56	1.05
	December	56	0.99
R	unning Annual A	verage (RAA):	1.06
	eets standard? e. RAA < MRDL o	f 4.0 mg/L as Cl2)	YES

Comments:		
Signature:	Date:	1/10/2019

Antelope Valley-East Kern Water Agency Kern System No. 1510053 **TOC Removal Running Annual Average**

Sample Date	Plant	Alkalinity mgCaCO3/L	Raw TOC mg/L	Treated TOC mg/L		Required % TOC reduction	"TOC Removal Ratio actual % /required %
1/10/2018	RWTP	plant off		<u></u>			10
2/14/2018	RWTP	plant off					
3/14/2018	RWTP	plant off					
4/11/2018	RWTP	162	0.53	0.60	0.0	25	1.0
5/9/2018	RWTP	164	0.49	0.55	0.0	25	1.0
6/13/2018	RWTP	149	0.47	0.52	0.0	25	1.0
7/11/2018	RWTP	167	0.66	0.69	0.0	25	1.0
8/8/2018	RWTP	152	0.68	0.75	0.0	25	1.0
9/12/2018	RWTP	plant off					
10/10/2018	RWTP	plant off					
11/14/2018	RWTP	plant off					
12/12/2018	RWTP	plant off					
	Minimum Maximum RAA	149.0 167.0 158.8	0.5 0.7 0.6	0.5 0.8 0.6	0.0 0.0 0.0		

Running Annual Average (RAA) 1.0

Title 22 California Code of Regulations Article 5:

Required percent TOC reduction**

Table 64536.2-A	S	ource Water Alkalin	ity
Raw TOC	0-60	<60 - 120	>120
>2.0 - 4.0	35.0 %	25.0 %	15.0 %
>4.0 - 8.0	45.0 %	35.0 %	25.0 %
>8.0	50.0 %	40.0 %	30.0 %

^{**}If one or more of the section 64536.4(b) 1-6 conditions are met, the system may assign a monthly value of 1 for the TOC removal ratio in lieu of the calculated value. List condition when used: 1

1. The system's source water TOC level, prior to any treatment is less than or equal to 2.0 mg/L

- 2. The system's treated water TOC level is less than or equal to 2.0 mg/L
- 3. The system's source water SUVA, prior to any treatment, is less than or equal to 2.0 L/mg-m
- 4. The system's finished water SUVA is less than or equal to 2.0 $\mbox{\em L/mg-m}$
- 5. A system practicing softening removes at least 10 mg/L of magnesium hardness (as CaCO3)
- 6. A system practicing enhanced softening lowers alkalinity below 60 mg/L (as CaCO3)