2021 Consumer Confidence Report # **Water System Information** Water System Name: Independence Town Water System Report Date: June 27, 2022 Type of Water Source(s) in Use: Groundwater Well Name and General Location of Source(s): Wells are located within the water service area of Independence. Drinking Water Source Assessment Information: The Source Water Assessment was completed in 2002. A copy of the complete assessment may be viewed at the Inyo County Environmental Health Services located at 1360 N. Main St., Bishop, CA. Time and Place of Regularly Scheduled Board Meetings for Public Participation: Inyo County Board of Supervisors meeting schedule can be obtained at http://www.inyocounty.us For More Information, Contact: Katie Paterson (760) 878-0201 ## **About This Report** We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1, 2021 to December 31, 2021 and may include earlier monitoring data. Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong) Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Laws Town Water System a (760) 878-0201 para asistirlo en español. #### **Terms Used in This Report** | Term | Definition | |------------------------------------|---| | Level 1 Assessment | A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. | | Level 2 Assessment | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. | | Maximum Contaminant
Level (MCL) | The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. | **SWS CCR** | Term | Definition | |--|--| | Maximum Contaminant
Level Goal (MCLG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). | | Maximum Residual
Disinfectant Level
(MRDL) | The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | Maximum Residual Disinfectant Level Goal (MRDLG) | The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | Primary Drinking Water Standards (PDWS) | MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. | | Public Health Goal
(PHG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. | | Regulatory Action Level (AL) | The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. | | Secondary Drinking
Water Standards
(SDWS) | MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. | | Treatment Technique (TT) | A required process intended to reduce the level of a contaminant in drinking water. | | Variances and
Exemptions | Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions. | | ND | Not detectable at testing limit. | | ppm | parts per million or milligrams per liter (mg/L) | | ppb | parts per million or milligrams per liter (mg/L) | | ppt | parts per trillion or nanograms per liter (ng/L) | | NTU | nephelometric turbidity units (a measure of cloudiness) | | µs/cm | microSiemens per centimeter (a measure of electric conductivity) | | pCi/L | picocuries per liter (a measure of radiation) | # Sources of Drinking Water and Contaminants that May Be Present in Source Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: • Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. SWS CCR Revised February 2021 - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. ## Regulation of Drinking Water and Bottled Water Quality In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. # **About Your Drinking Water Quality** # **Drinking Water Contaminants Detected** Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. Table 1. Sampling Results Showing the Detection of Coliform Bacteria | Microbiological
Contaminants | Highest No.
of
Detections | No. of
Months in
Violation | MCL | MCLG | Typical Source of Bacteria | |--|---------------------------------|----------------------------------|--|------|--------------------------------------| | Total Coliform
Bacteria
(State Total
Coliform Rule) | (In a month)
0 | 0 | 1 positive monthly sample (a) | 0 | Naturally present in the environment | | Fecal Coliform or
E. coli
(State Total
Coliform Rule) | (In the year)
0 | 0 | A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive | None | Human and
animal fecal
waste | | Microbiological
Contaminants | Highest No.
of
Detections | No. of
Months in
Violation | MCL | MCLG | Typical Source of Bacteria | |--|---------------------------------|----------------------------------|-----|------|------------------------------| | E. coli
(Federal Revised
Total Coliform
Rule) | (In the year)
0 | 0 | (b) | 0 | Human and animal fecal waste | ⁽a) Two or more positive monthly samples is a violation of the MCL Table 2. Sampling Results Showing the Detection of Lead and Copper | Lead
and
Copper | Sample
Date | No. of
Sam-
ples
Collect-
ed | 90 th
Percen-
tile Level
Detected | No.
Sites
Exceed
-ing AL | AL | PHG | No. of
Schools
Requesting
Lead
Sampling | Typical Source of
Contaminant | |-----------------------|----------------|--|---|-----------------------------------|-----|-----|---|---| | Lead
(ppb) | 9/2019 | 16 | ND | 0 | 15 | 0.2 | 2 | Internal corrosion of
household water
plumbing systems;
discharges from
industrial manufacturers;
erosion of natural
deposits | | Copper (ppm) | 9/2019 | 16 | 0.15 | 0 | 1.3 | 0.3 | Not
applicable | Internal corrosion of
household plumbing
systems; erosion of
natural deposits;
leaching from wood
preservatives | Table 3. Sampling Results for Sodium and Hardness | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | |---|----------------|-------------------|---------------------|------|---------------|--| | Sodium (ppm) | 7/21/2020 | 18.75 | 16.7 – 20.8 | None | None | Salt present in the water and is generally naturally occurring | | Hardness (ppm) | 2017 | 55 | 53-58 | None | None | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | ⁽b) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*. Table 4. Detection of Contaminants with a Primary Drinking Water Standard | Chemical or
Constituent
(and
reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | |--|----------------|-------------------|------------------------|---------------|--------------------------|--| | Gross Alpha (pCi/L) | 7/21/2020 | ND | N/A | 15 | 0 | Erosion of natural deposits. | | Radium 226 (pCi/L) | 2019 | 1 | | 5
226+228 | 0.05 | Erosion of natural deposits. | | Radium 228 (pCi/L) | 2019 | 1 | | 5
226+228 | 0.019 | Erosion of natural deposits. | | Fluoride (mg/L) | 7/21/2020 | ND | ND | 2.0 | 1 | Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories. | | Chlorine | 2021 | 2.1 | 0-0.8 | 4 | 4 | Drinking water disinfectant added for treatment. | | Nitrate | 05/19/2021 | 0.19 | 0.2 – 0.18 | 10 mg/L | 1 mg/L | Present in groundwater; generally associated with septic systems or fertilizer. | | TTHM's (Total
Trihalomethanes)
(ug/L) | 2019 | ND | | 80 | N/A | Byproduct of drinking water disinfection. | | HAA5 (Sum of 5
Haloacetic Acids)
(ug/L) | 2019 | ND | | 60 | N/A | Byproduct of drinking water disinfection. | Table 5. Detection of Contaminants with a Secondary Drinking Water Standard | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | SMCL | PHG
(MCLG) | Typical Source
of
Contaminant | |---|----------------|-------------------|---------------------|------|---------------|--| | Color (Units) | 7/21/2020 | 3 | 3 | 15 | N/A | Naturally occurring organic materials. | | Turbidity (NTU) | 7/21/2020 | .23 | ND-1.3 | 5 | N/A | Soil runoff | | Specific
Conductance
(uS/cm) | 7/21/2020 | 204.5 | 191-218 | 900 | N/A | Substances that form ions when in water. | |------------------------------------|-----------|-------|-----------|-----|-----|---| | Chloride (mg/L) | 7/21/2020 | 10.07 | 9.05-11.1 | 250 | N/A | Runoff/leaching from natural deposits | | Sulfate (ppm) | 7/21/2020 | 19.5 | 18.1-20.9 | 250 | N/A | Runoff/leaching from natural deposits; industrial wastes. | | Total Dissolved
Solids (ppm) | 7/21/2020 | 135 | 129-141 | 500 | N/A | Runoff/leaching from natural deposits. | **Table 6. Detection of Unregulated Contaminants** | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | Notification
Level | Health Effects
Language | |---|----------------|-------------------|---------------------|-----------------------|----------------------------| | Chrhromium-6
(ug/L) | 2020 | ND | ND | N/A | N/A | | Radon (pCi/L) | 2017 | 1400 | | N/A | See below. | # **Additional General Information on Drinking Water** Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [Enter Water System's Name] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead. Additional Special Language for Nitrate, Arsenic, Lead, Radon, and *Cryptosporidium*: We constantly monitor the water supply for various contaminants. We have consistently detected radon in the groundwater supply. There is no federal regulation for radon levels in drinking water. Exposure over a SWS CCR Revised February 2021 long period of time to air transmitting radon may cause adverse health effects. Radon is a radioactive gas that you cannot see, taste or smell. It is found throughout the U.S. Radon can move up through the ground and into a home through cracks and holes in the foundation. Radon can build up to high levels in all types of homes. Radon can also get into indoor air when released from tap water from showering, washing dishes, and other household activities. Compared to radon entering the home through soil, radon entering the home through tap water will in most cases be a small source of radon in indoor air. Radon is a known human carcinogen. Breathing air containing radon can lead to lung cancer. Drinking water containing radon may also cause increased risk of stomach cancer. If you are concerned about radon in your home, test the air in your home. Testing is inexpensive and easy. You should pursue radon removal for your home if the level of radon in your air is 4 picocuries per liter of air (pCi/L) or higher. There are simple and inexpensive ways to fix a radon problem. For additional information, call your state radon program (1-800-745-7236), the U.S. EPA Safe Drinking Water Act Hotline (1-800-426-4791), or the National Safe Council Radon Hotline (1-800-767-7236).