2024 Consumer Confidence Report

Water System Information

Water System Name: Southern California Edison Bishop Creek Plant 4. System #1400078

Report Date: June 20, 2025

Type of Water Source(s) in Use: Groundwater Well

Name and General Location of Source(s): Well 01 S is located at the Bishop Creek Plant 4 Facility

Drinking Water Source Assessment Information: The source assessment was updated in March 2012. The source is considered vulnerable to the following activities not associated with a detection in the water supply: sewer collection systems and septic systems-low density. The complete assessment is available for review at Inyo County Environmental Health Services, 207 W. South Street, Bishop, or call 760-873-7865. The State Water Resources Control Board, Division of Drinking Water, San Bernardino Branch, 464 W. 4th St., Rm 437 San Bernardino, CA, 909-383-4328 will also have this information.

Time and Place of Regularly Scheduled Board Meetings for Public Participation: n/a

For More Information, Contact: Christopher Quach, 626-659-3914

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2024 and may include earlier monitoring data.

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Southern California Edison Bishop Creek Plant 4. System #1400078 a 4000 Bishop Creek Road, Bishop, CA 93514 para asistirlo en español.

Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Southern California Edison Bishop Creek Plant 4. System #1400078 以获得中文的帮助: 4000 Bishop Creek Road, Bishop, CA 93514.

Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa Southern California Edison Bishop Creek Plant 4 o tumawag sa 4000 Bishop Creek Road, Bishop, CA 93514 para matulungan sa wikang Tagalog.

Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ Southern California Edison Bishop Creek Plant 4. System #1400078 tại 4000 Bishop Creek Road, Bishop, CA 93514 để được hỗ trợ giúp bằng tiếng Việt.

Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau Southern California Edison Bishop Creek Plant 4. System #1400078 ntawm 4000 Bishop Creek Road, Bishop, CA 93514 rau kev pab hauv lus Askiv.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)

Term Definition				
ppt	parts per trillion or nanograms per liter (ng/L)			
ppq	parts per quadrillion or picogram per liter (pg/L)			
pCi/L	picocuries per liter (a measure of radiation)			

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for

certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Lead and Copper

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb)	08/31/22	5	1.1	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	08/31/22	5	0.0705	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

SCE Bishop Plant 4 drinking water system staff has completed the initial lead service line inventory required by U.S. EPA's Lead and Copper Rule Revisions. The deadline for the initial inventory was October 16, 2024.

Through completing a historical records review and field investigations, SCE Bishop Plant 4 drinking water system staff has determined it has no lead or galvanized requiring replacement service lines in its distribution system.

SCE Bishop Plant 4 drinking water system staff reviewed all applicable sources of information, including:

All water system records, including distribution system maps and drawings

SCE Bishop Plant 4 drinking water staff used pipe dating and interviews to investigate the service lines. The water system records indicated the date of installation. If the installation date of a service line was unknown or determined to be before the state or local lead ban in 1986, a visual inspection was performed to physically verify the service line material. Of the 16 service lines, 4 met this criterion and required physical verification.

SCE Bishop Plant 4 will update service line material information obtained from normal operations, such as service line maintenance or installation after October 2024 and will update the initial inventory accordingly.

Table 2. Sampling Results for Sodium and Hardness

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	08/31/22	8.6	n/a	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	08/31/22	63.9	n/a	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

Table 3. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detect ed	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Nitrate (as N)	08/07/24	0.31	n/a	10	n/a	Runoff from fertilizer use; leaking from septic tanks, sewage; erosion of natural deposit
Total Chlorine Residual (free chlorine)	2024	0.59 [avg]	0.21 to 1.1	4	4	Drinking water disinfectant added for treatment
Combined Uranium (pci/l)	04/27/23 & 01/11/23	3.8 [avg]	3.4 to 4.2	20	0.43	Erosion of natural deposits
Gross Alpha Particle Activity (pci/l)	04/27/23 & 01/11/23	4.1 [avg]	2.91 to 5.20	15	n/a	Erosion of natural deposits
Fluoride (ppm)	08/31/22	0.17	n/a	2	1	Erosion of natural deposits; water additive which promotes strong teeth
Uranium (µs/cm)	08/31/22	3.8	n/a	20	0.43	Erosion of natural deposits
Hexavalent Chromium (μg/L)	12/11/2024	0.093	n/a	10	0.02	Erosion of natural deposits; transformation of naturally occurring trivalent chromium

	to hexavalent chromium by natural processes and human activities such as discharges from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and
	textile

Table 4. Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Conductivity @ 25 C (umho/cm)	07/18/23	160	n/a	1600	n/a	Substances that form ions when in water; seawater influence
Chloride (ppm)	08/31/22	0.89	n/a	100	n/a	Runoff/leaching from natural deposits; seawater influence
Sulfate (ppm)	08/31/22	7.6	n/a	500	n/a	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (ppm)	08/31/22	110	n/a	1000	n/a	Runoff/leaching from natural deposits
Zinc (ppb)	08/31/22	24	n/a	5000	n/a	Runoff/leaching from natural deposits
Turbidity (NTU)	08/31/22	0.35	n/a	5	n/a	Soil runoff

Table 5. Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
Bicarbonate Alkalinity	08/31/22	90	n/a	n/a	n/a
Calcium	08/31/22	20.5	n/a	n/a	n/a
Magnesium	08/31/22	3.07	n/a	n/a	n/a
pH, Laboratory	08/31/22	7.54	n/a	n/a	n/a

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language: No issues regarding lead were found in your drinking water system. Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. SCE Bishop Plant 4 (#1400078) is responsible for providing high quality drinking water and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact SCE Bishop Plant 4 (#1400078) and Christopher Quach, 626-659-3914. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead.

Important Reminder About Your Water System

Difference Between Potable Water and Non-Potable Water

There are two (2) separate water systems at Bishop Plant 4. One is the groundwater well drinking water system that all building plumbing is connected to for safe drinking water. The other is a surface water irrigation & firefighting system, which is not safe for drinking. You can tell the difference by

looking at the hose bibs. Hose bibs connected to the side of buildings and the outdoor hose bibs with orange handles are connected to the drinking water system. The orange handle hose bibs are not intended to be drank from and should not be used for consumption.

Fire hydrants and outdoor hose bibs that are not colored orange or connected to the side of buildings are connected to the non-potable surface water system. The surface water system is expressly limited to firefighting and irrigation purposes only, consumption of this water is prohibited. Please do not interact with these devices unless there is an emergency, or you are a qualified company employee/contractor.

Cross-Connection Control

At SCE, we work hard to ensure that the water we deliver to you meets or exceeds all drinking water regulatory standards. Our Cross-Connection Control Program is one of many critical tools we use to protect the high-quality of your drinking water supply. Your drinking water normally flows one way into your property. Unprotected connections between the drinking water system and non-potable water sources on your property (sources unsafe for drinking such as swimming pools and landscape irrigation systems) can introduce harmful contaminants through backflow or reverse flow into the drinking water system. Property owners therefore need to protect these cross-connections against backflow. For more information about cross-connections, backflow prevention, and requirements, please contact our Cross-Connection Control Coordinator at (626) 659-3914.