APPENDIX F: Certification Form (Suggested Format)

Consumer Confidence Report Certification Form

Water System Name: Water System Number:			Calipatria	State Prison		
			# 1310800			
<u>June</u> certi	27, 20 fies that itoring	19 to custome at the inform	ers (and app ation conta	by certifies that its Consumer Confidence Report propriate notices of availability have been given). ained in the report is correct and consistent w d to the State Water Resources Control Board, D	Further, the system the the compliance	
Cei	tified b	y: Näme	:	LEN M. GATLIN		
		Signature:		JAN JAN	-	
		Title:	-	CHIEF WATER & SEWER PLANT SUPERVI	SOR	
		Phone	Number:	(760) 348-7000 Ext. 7125 Date: Jul	y 30, 2019	
	s that a	pply and fill-i	n where app	nd good-faith efforts taken, please complete the be propriate: r other direct delivery methods. Specify other dire		
	used:					
\boxtimes		wing methods	S:	ed to reach non-bill paying consumers. Those of	fforts included the	
		_	_	stal patrons within the service area (attach zip code ility of the CCR in news media (attach copy of pre		
		Publication	of the CCI	R in a local newspaper of general circulation (ar ling name of newspaper and date published)	1 "	
	\boxtimes		-	ic places (attach a list of locations)		
				pies of CCR to single-billed addresses serving sees, and schools	veral persons, such	
			-	organizations (attach a list of organizations) ther methods used)		
				00,000 persons: Posted CCR on a publicly-acces	sible internet site at	
	For in	westor-owned	l utilities: I	Delivered the CCR to the California Public Utilitie	s Commission	
Thi	s form is p	rovided as a conve	nience for use t	o meet the certification requirement of the California Code of Regula	itions, section 64483(c).	

2018 Consumer Confidence Report

Water System Name:

CALIPATRIA STATE PRISON

Report Date: June 18, 2019

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2018 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.

Type of water source(s) in use: Treated Potable Water

Name & general location of source(s): We purchase treated water from Golden State Water Company (GSWC)

located at , 631 S. Sorensen Ave., Calipatria, CA 92233. GSWC receives and treats raw Colorado river water

delieved to them via the Imperial Irrigation District's East Highline Canal.

Drinking Water Source Assessment information: The Imperial Irrigation District preformed a Watershed Sanitary

Survey in 2014. A copy of this document is available upon request through the GSWC at the address listed above.

Or through the contact person listed below.

Time and place of regularly scheduled board meetings for public participation: N/A (State Prison)

For more information, contact: David Chase, CPM II

Phone: (760) 348-7000 Ext. 5905

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor. taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers freatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (µg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

	Calipatr	a State	Prison	Water Sy	stem-	Distribu	ition W	ater Oua	litv
									TANDARD
Chemical or Constituent (units)	Sample Date	1	Level etected	Range o	of	MCL [MRDL]	PHG (MCL) [MRDL	G) Typ	ical Source of Contaminant
Chlorine (as CL²)(mg/L)	2018		5 mg/L arter Avg.	0.54-2.01 n	ng/L	4.0 mg/L]	[4.0 mg/		Water Disinfectant Added and For The Treatment Process.
TTHM [Total for four Tribalomethanes] (µg/L)	2018		.0 μg/L est LRAA	7.4.0-49.0	ıg/L	80.0 µg/L	NA		uct Of Drinking Water
HAA5 [Total of five Haloacetic Acids] (µg/L)	2018) <u>µg/L</u> est LRAA	0.0-1.7 μg	/L	60.0 μg/L	NA	By-Prod Chlorina	uct Of Drinking Water tion
SAI	MPLING 1	RESULT	S SHOV	VING THE	ETEC	TION OF	COLII	ORM BAC	TERIA
Microbiological	Highest No of Detection	o. No.	of month violation		MCI		MCL		ypical Source of Bacteria
Total Coliform Bacteria	(JUNE)		1		nan 1 san with a de		Q	Naturally	present in the environment
Fecal Coliform or E. coli	(2018) Q		<u>0</u>	repeat coliforr	sample on and cit tects fee:	ple and a letect total her sample al coliform	<u>g</u>	Human a	nd animal fecal waste
S	AMPLING	RESUI	TS SHO	WING THE	DETE	CTION (F LEA	D AND CO	PPER
Inorganic Constituents (units)		Action Level	PHG (MCL)	Sample Data	90 th % Level	2018 Sar	npling		al Source of Constituent
Lead (µg/L)		15	0.2	None of the 80 < samples collected in 2018 exceeded the action level.		Jan. 26, July 18,	of	ternal corrosion natural deposits	of household plumbing systems; erosion leaching from wood preservatives.
Inorganic Constituents (units)		Action Level	PHG (MCL)	Sample Data	90 th % Level			pical Source of	Constituent
Copper (mg/L)		1.3		None of the 80 samples collected in 2018 exceeded the action level.	0.290	Jan, 26,	In of		of household plumbing systems; erosion leaching from wood preservatives.

^{*}Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided later in this report.

(As Re			iter System a State Priso			uality ater Compan	n	
Primary Standards - Health Based (Units)	Primary MCL	PHG (MCLG)	Range of Detections	Average Level	Most Recent Sampling Date	\$80,950565,940065059	cal Source of Contam	lnant
Turbidity	i i i i i i i i i i i i i i i i i i i	<u> </u>	Detections	(Janu lieve ra)	Salajang Date			
Highest single measurement of the treated surface water (NTU)	TT = 1.0	n/a	n/a	0.31	2018	Soil ranoff		
Lowest percent of all monthly readings less than 0.3 NTU (%)	TT = 95	11/8	n/a	96.0%	2018	Soil runoff		
Inorganic Constituent		10000000000000000000000000000000000000		12233				
Aluminum (mg/L)**	1	0.8	ND-0.18	0.10	2018		l deposits; residue from s	some surface
Arsenie (µg/L)	10	0.004	ND-3.20	ND	2018		d deposits; runoff from o	rchards, grass
Barium (mg/L)**	1	2	0.13-0.14	\$61059606460		Discharges of oil	roduction wastes. Brilling wastes and from	metal refinerie
	 	Vinsiciosyssi	6.	0.14	2018	erosion of natura	deposits. I deposits; water additive	
Fluoride (mg/L)**	2.0	1	0.33-0.35	0.34	2018		harge from fertilizer and	
Radioactive Constituents	VIII (1880)				[*	Tactories		
Gross Alpha Activity (pCi/L)**	15(a)	(0)	n/a	5.7	2016	Erosion of nature	l deposits	
Uranium (pCi/L)**	20	0.43	n/a	3.2	2016	Erosien of netura	d deposits	
Secondary Standards- Aesthetic(units)	Secondary MCL	PHG (MCLG)	Range of Detections	Average Level	Most Recent Sampling Date	Туріс	al Source of Contam	inant
Aluminum (μg/L)**	200	n/a	ND-180	98	2018	Erosion of natura	deposits; residue from	some surface
Chloride (mg/L)**	500	n/a	100-120	110	2018		from natural deposits; ses	water influenc
Odor Threshold (units)	3	n/a	1-2	2	2018	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ng organic materials	
Specific Conductance (uS/cm)**	1600	n/a	1000 - 1100	1100	2018	9 6 6 6 6 6 6 7 7 7 6 6 5 6 6 6 6 6 6 6 6	orm when in water; senw	ater influence
Sulfate (mg/L)**	500	11/2	260 - 280	270	2018	<u>I Pro Corto de Cara de Perogrado de Cara.</u> I Pro Cara de Cara	rom natural deposits; ind	
Total Dissolved Solids (mg/L)**	1000	0/2	650 - 740	700	2018	AN ARXIVENESSASSASSASSASSAS	rom natural deposits;	Matital wastes
Other Parameters (units)	Notification Level	PHG (MCLG)	Range of Detections	Average Level	Most Recent Sampling Date	SACRESCA DE PROPERCIO	I Source of Contam	inant
Alkalinity (mg/L)**	n/a	n/a	130 - 160	150	2018		Maria per adala mendiante (1986) a ta Maria per adala mendiante (1986) a ta	e peate dis Priscosille Sindstored and need
Calcium (mg/L)**	n/a	n/a	83 - 89	86	2018			
Hardness [as CaCO3] (mg/L)**	n/a	n/a	320 - 350	340	2018	The sum polyv generally magnes naturally occurri	alent cations present ium and calcium; the cat	in the water ions are usuall
Hardness [as CaCO3] (grains/gal)**	n/a	n/a	22 - 25	24	2018	HAIGI ANY OCCUPA	*!	
Magnesium (mg/L)**	n/a	n/a	n/a	32	2018			
pH (pH units)** Potassium (mg/L)**	n/a	n/a	n/a	7.8	2018			
	n/a	n/a	n/a	5.3	2018	**************************************		
Sodium (mg/L)**	n/a	n/a	n/a	130	2018	Refers to the sal	i present in the water a	nd is generall
Disinfection Byproducts and Disinfectant Residuals (units)	Primary MCL	PHG (MCLG)	Range of Detections	Average Level	Most Recent Sampling Date	Typic	al Source of Contami	nant.
Chilorine [as C12] (mg/L)	(MRDL) (4.0)	(4)	0.2 - 1.5	0.7	2018		·	
HAA5 Total of Five Haloacetic Acids (µg/L)	60	n/a	2.2 - 17	12	2018		sinfectant added for trea king water disinfection	teri6111
TTHMs [Total of Four Tribalomethanes](µg/L)	80	n/a	5.3 - 55	47	2018		king water disinfection	
Inorganic Constituents (units)	Action Level	PHG (MCL)	Sample Data	90th % Level	Most Recent Sampling Date	Турі	al Source of Constitu	ent
Copper (mg/L)	1.3	0.3	None of the 21 samples collected exceeded the action level.	0.06	2016	Internal corrosion	of household plumbing s deposits; leaching from t	ystems;
Lead sampling in schools and residential plumbing	Action Level	PHG (MCL)	Sample Data	90th % Level	Most Recent Sampling Date	Турі	cal Source	Number of Schools Tester
Lead (µg/L)	15	0.2	None of the 21 samples collected exceeded the action level.	ND	2016	Internal corrosic	n of household water ps; discharges from facturers; erosion of	(b) ⁻

Raw/Source Water Assessments for GSWC are available by request from the State Water Resources Control Board Division of Drinking Water, 1350 Front Street, Room 2050, San Diego, CA, 92101 or by request at the Calipatria State Prison Water Treatment Plant.

⁽a) MCL is based on Gross Aipha minus Uranium.
(b) The State of California has made lead sampling in schools mandatory with a compilance window through 2019
ND = Not Detected

CaCO3 = Calcium Carbonate

^{*}Any violation of an MCL or AL has n asterisk attached. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Calipatria State Prison is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4701) or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATI	ON OF A MCL, MRDL, AL, 1	T, OR MONITOR	ING AND REPORTING RI	EQUIREMENT
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
Total Coliform MCL Violation	2 Positive Total Coliform Samples were reported in June 2018	One Month	Disinfectant residual increased additional sampling conducted.	Please refer to the Health Effects Language listed below.
Health Effects Languag	e Continued;	·		

*Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution.

Summary Information for Violation of a Surface Water TT

	VIOLAT	ON OF A SURFACE	WATER TT	
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
NONE		·		

Consumer Confidence Report:	Page 5 of C
Summary Information for Operating Under a Variance or Exemption	on
N/A	
Summary Information for Federal Revised Total Coliform Rule	
Level 1 and Level 2 Assessment Requirements Level 1 or Level 2 Assessment Requirement not Due to an E. coli MCL Violation	
Due to a Total Coliform Violation that occurred during the month of June, 2018 Calipatria State Prison was rean EPA Level 1 Assessment. During June 2018 one routine bacteriological sample and one repeat sample	tested positive for
Coliform Bacteria. The Total Coliform MCL for this system is one, because this system received two positive re the MCL was exceeded and a violation was issued by the Department of Drinking Water, this triggered Assessment Please note all water quality requirements of the Level 1 Assessment and the Department of Drin followed and all preceding & subsequent bacteriological samples during June 2018 were negative for Coliform B.	sults in one month an EPA Level 1 nking Water were
Level 2 Assessment Requirement Due to an E call MCI Violation	161

Level 2 Assessment Requirement Due to an E. coli MCL Violation

During calendar year 2018 Calipatria State Prison did not experience a E. coli MCL Violation, therefore a Level 2 Assessments was not required due to a E. coli MCL Violation in 2018.

Intentionally blank

CALIPATRIA STATE PRISON 2019 POSTING LOCATIONS For 2018 CCR

POSTING LOC	ATIONS	DATE POSTED		CCR POSTED BY
1. Water Treatment Plant / Bldg # 210	Office Bulletin Board	106/27/19	0824	e. Alhero
2. Water Treatment Plant / Bldg # 212	Chemical Room Bulletin Board	06/27/19	0827	e i Alfaro
3. Warehouse / Bldg. # 700 NORTH	Bulletin Board	06/21/19	0830	C-AIFAND
4. Mail Room / Bldg. # 700 SOUTH	Bulletin Board	06/27/19	<u> 0935</u>	
5. State Garage Bldg. # 553	Bulletin Board	06/27/19	0839	
6. Fire Station Bldg. # 701	Bulletin Board	06/27/19	10844	
7. Administration Building / Bldg. # 800	Bulletin Board	96/27/19	0850	
8. Administration Building / Bldg. #800	Staff Lunch Area	06/27/19	0853	
9. Main Staff & Visitor Entrance / Bldg. # 805	Bulletin Board	06/27/19	0900	
10. Sallyport (Vehicle Entrance) / Bldg. # 806	Bulletin Board	06/27/19	07:50	
11. Infirmary / Bldg. # 461	Bulletin Board	06/4//9	09:31	CIPITAVO
12. Level One / Bldg. # 903	Programming Office Bulletin Board	06/27/19	0410	CIAlfara
13. Level One / Bldg. # 905	Visiting Area Bulletin Board	06/27/10	1)91/2	(C) Alfano
14. Level One / Bldg. # 901	Dorm 1 Bulletin Board	06/21/19	001	CI AIFOVO
15. Level One / Bldg. # 902	Dorm 2 Bulletin Board	06/27/10	093	1 O. AlFAro
16. Facility "A" / Bidg. # 421	Programming Office Bulletin Board	06/27/19	0	127 C. AlFaro
17. Facility "A" / Bldg. # 430	Visiting Area Bulletin Board	06/27/19		9:30 (Alfa 10
18. Facility "A" / Bldg. # 325	Housing Unit I Bulletin Board	06/27/19	0	9:400, Alfaro
19. Facility "A" / Bldg, # 324	Housing Unit 2 Bulletin Board	06/27/10	0.9	1.50 m, 11/tava
20. Facility "A" / Bldg, # 323	Housing Unit 3 Bulletin Board	06/27/19	10	OD M. ALTO YO
21. Facility "A" / Bldg, #322	Housing Unit 4 Bulletin Board	01/27/19	10.	15 N. 11/Fe 10
22, Facility "A" / Bldg, #321	Housing Unit 5 Bulletin Board	06/27/14	10	30 MIAIFA 10
23. Facility "B" / Bldg. # 431	Programming Office Bulletin Board	06/27/19	11:	45 ORDONA
24. Facility "B" / Bldg. # 430	Visiting Area Bulletin Board	06/27/19	09:1	4 O. Alford
25. Facility "B" / Bldg. # 335	Housing Unit I Bulletin Board	106/27/19	11.3	O R DONA
26. Facility "B" / Bldg. # 334	Housing Unit 2 Bulletin Board	010/27/19	11215	ORDONA
27. Facility "B" / Bldg. # 333	Housing Unit 3 Bulletin Board	06/27/19	11:05	S OR DONA
28. Facility "B" / Bldg. # 332	Housing Unit 4 Bulletin Board	06/27/19	1025	5 ORDONA
29. Facility "B" / Bldg, # 331	Housing Unit 5 Bulletin Board	06/27/19)0:4	S ORDONA
30. Plant Operation Office "B" / Bldg. # 551	Office Bulletin Board	06/27/14	0930	C, A/FAVS
31. Facility "C" / Bldg. # 441	Programming Office Bulletin Board	06/27/19	10:35	ORDONA
32. Facility "C" / Bldg. # 440	Visiting Area Bulletin Board	06/27/19	<i>୍ଷ</i> ୍ଟ । । ୦	<u> ORDONA</u>
33. Facility "C" / Bldg, # 345	Housing Unit 1 Bulletin Board	06/23/19	101.25	<u> </u>
34. Facility "C" / Bldg. # 344	Housing Unit 2 Bulletin Board	06/27/19	10:15	ORIONA
35. Facility "C" / Bldg; #343	Housing Unit 3 Bulletin Board	04/27/19	10:05	
36. Facility "C" / Bldg. # 342	Housing Unit 4 Bulletin Board	06/27/19	09:55	
37. Facility "C" / Bldg. # 341	Housing Unit 5 Bulletin Board	0 6/27/19	09:45	<u> </u>
38. Facility "D" / Bldg. #451	Programming Office Bulletin Board	06/27/19	0830	<u>ORDANA</u>
39. Facility "D" / Bldg. # 440	Visiting Area Bulletin Board	06/27/19	08:15	OR DONA
40. Facility "D" / Bldg. # 355	Housing Unit 1 Bulletin Board	06/27/19	108:35 108:35	<u> ORDONA</u>
47. Facility "D" / Bldg. # 354	Housing Unit 2 Bulletin Board	06/27/14	09,23	- ARDINA
42. Facility "D" / Bldg. #353	Housing Unit 3 Bulletin Board	06/27/19	09:10	<u> </u>
43. Facility "D" / Bldg. # 352	Illousing Unit 4 Bulletin Board	06/27/19	08:50 08:40	<u> </u>
44. Facility "D" / Bldg, #351	Housing Unit 5 Bulletin Board	06/27/19		
45. ASU / Bldg. # 360 46. Accounting Office / Bldg. 512	Programming Office Bulletin Board Office Bulletin Board	06/27/19	08:01 10:47	
40. Accounting Office / Blug, 512	Office Bulletin Board	06/27/19	10.97	C. It /J-ar ()