SHADY OAKS TRAILER PARK 2023 Water Quality Consumer Confidence Report Public Water System Number 1100452

Este informe contiene información muy importante sobre su agua beber. Tradúzcalo ó hable con alguien que lo entienda bien.

For additional information concerning your drinking water, contact Steve Grimshaw at (916) 833 4840

Water for the Shady Oaks Trailer Park originates from one groundwater source known as new Well 01.

DEFINITIONS OF SOME OF THE TERMS USED IN THIS REPORT:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is technologically, and economically feasible.

Primary Drinking Water Standards (PDWS): MCLs for Contaminants that affect health along with their monitoring and reporting requirements, and surface water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the Federal Environmental Protection Agency (USEPA).

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

pCi/L: picocuries per liter (a measure of radiation)ppb: parts per billion or micrograms per literppm: parts per million or milligrams per liter

nd: non detectable at testing limitTDS: Total Dissolved Solids

MICROBIOLOGICAL WATER QUALITY:

Testing for bacteriological Contaminants in the distribution system is required by State regulations. This testing is done regularly to verify that the water system is free from coliform bacteria. The minimum number of tests required per month is one. In our distribution system, we test the water once per month for coliform bacteria. The highest number of samples found to contain coliform bacteria during any one month was zero.

DETECTED CONTAMINANTS IN OUR WATER:

able1. Sampli	ng Result	s Showing t	he Detection	of Lead a	nd Cop	per		
Lead and Copper	Sample Date	No. of Samples Collected	90th Percentile Level Detected	No. Sites Exceedi ng AL	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead (ppb)	2022	5	0	0	15	0.2	None	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	2022	5	0	0	1.3	0.3	N/A	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

								_		
Table 2. Samplii	ng Resul	ts for Sodiu	m and Hard	ness						
Chemical or Constituent (and reporting units)	Sample	Level Detected	M CL	PHG		Турі	cal Source o	f C o	ntaminant	
Sodium (ppm)	2020	19	None	None	Salt pre	sent in	the water a	nd is	generally natura	ally
Hardness (ppm)	2020	12 5	None	None		y mag n	esium and c		ent in the water, m, and are usual	
Table 3. Detection	n of Cor	ntam in ants v	vith a Prima	ry Drinkii	ng Water \$	Standa	rd			
Chemical or Constituent (and Reporting Units)	Sample	Level Detected	MCL	PHG	Typical	Source	of Contami	nant		
Gross Alpha Particle Activity (pCi/L)	2016	0.67	15	0	Erosion	of nat	ural deposit	s		
Nitrate (mg/L as N	2023	0.5	10	10		tic ta			izer use; leaching erosion of natur	
Table 4. Detection	n of Cor	ntam in ants v	vith a Secon	dary Drin	king Wate	er Stan	dard			
Chemical or Constituent (and reporting	Sample Date	Level Detected	SMCL		al Source ntaminant					
units)										
Chloride (mg/L)	2020	17	50 0		leaching f s; seawate					
Specific Conductance (µS/cm)	2020	370	1,600		ces that f eawater in		ns when in			
Sulfate (mg/L)	2020	15.6	500	Runoff/	leaching f	rom na	tural deposi	ts; i	ndustrial wastes	
Total Dissolved Solids [TDS] (mg/L)	2020	220	1,000	R unoff/ deposit	leaching f s	rom na	tural			
Turbidity (units)	2 0 16	0.6	5	Soil run	off			T		

GENERAL INFORMATION ON DRINKING WATER:

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at 1-800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, agricultural application, and septic systems.
- □ Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board (Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly individuals, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The USEPA/Center for Disease Control guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791.

Lead:

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Shady Oaks Trailer Park is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

SOURCE WATER ASSESSMENT:

A source water assessment has been completed for the well serving Shady Oaks Trailer Park. The source is considered most vulnerable to the following activities not associated with any detected contaminants:

High Density - Septic Systems

A copy of the complete assessment may be viewed at Valley District Office 364 Knollcrest Drive, Suite 101 Redding, CA 96002 Reese Crenshaw, (530) 224-4861

	DLATION INFORMATION:
 	DITIONAL INFORMATION: