2021 Consumer Confidence Report

Water System Information

Water System Name: Larry A Shehadey Dairy, CA1000641

Report Date: May 6, 2022

Type of Water Source(s) in Use: Groundwater

Name and General Location of Source(s): DW3N-Well 01 located 600 ft south of the San Joaquin River and DW3S-Well 02 is located 560 ft south of DW3S-Well 01

Drinking Water Source Assessment Information: This water system has not yet been assessed for possible source contamination.

Time and Place of Regularly Scheduled Board Meetings for Public Participation: Contact Brian Visser to schedule an appointment.

For More Information, Contact: Brian Visser, Telephone: (559) 655-8942

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2021 and may include earlier monitoring data.

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse **Larry A Shehadey Dairy** a (559) 655-8942 para asistirlo en español.

Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Larry A Shehadey Dairy, 24387 E Whitesbridge, Kerman, CA (559) 655-8942.

Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa **Larry A Shehadey Dairy**, 24387 E Whitesbridge, Kerman, CA o tumawag sa (559) 655-8942 para matulungan sa wikang Tagalog.

Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ Larry A Shehadey Dairy tại (559) 655-8942 để được hỗ trợ giúp bằng tiếng Việt.

Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau **Larry A Shehadey Dairy** ntawm (559) 655-8942 rau kev pab hauv lus Askiv.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ppq	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA							
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria		
Total Coliform Bacteria	(In a month)		1 positive monthly sample ^(a)	0	Naturally present in the		
(state Total Coliform Rule)	6	3			environment		
Fecal Coliform or E. coli	(In the year)		A routine sample and a repeat		Human and animal fecal		
(state Total Coliform Rule)			sample are total coliform positive,		waste		
	0	0	and one of these is also fecal				
			coliform or <i>E. coli</i> positive				
E. coli	(In the year)		(b)	0	Human and animal fecal		
(federal Revised Total	0	0			waste		
Coliform Rule)							

⁽a) Two or more positive monthly samples is a violation of the MCL

⁽b) Routine and repeat samples are total coliform-positive and either is E. coli-positive or system fails to take repeat samples following E. coli-positive routine sample or system fails to analyze total coliform-positive repeat sample for E. coli

analyze total coliform-positive repeat sample for E. coli											
TABLE 2	- SAMPL	ING RESU			VING THE I	DETECT	ION O	F LEAI	D AND (COPPER	
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of Samples Collected	amples Percenti		No. Sites Exceeding AL	AL	PHG	Requ	Schools uesting Sampling	Typical Source of Contaminant	
Lead (ppb)	9/12/19	5	1.6		0	15	0.2	_	Not icable	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits	
Copper (ppm)	9/12/19	5	0.0)4	0	1.3	0.3		Not icable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	
	TABLE	3 – SAMPI	LING I	RESU	ULTS FOR S	SODIUM	AND I	IARDN	NESS		
Chemical or Constituent (and reporting units)	Sample Date		Level Detected		Range of Detections	MCL		PHG MCLG) Typic		al Source of Contaminant	
Sodium (ppm) Well 01 Well 02	6/25/18		70 110		N/A	None	N	one		sent in the water and is ly naturally occurring	
Hardness (ppm) Well 01 Well 02	6/25/18		2.2 3.1		N/A	None	N	one	present magnes	polyvalent cations in the water, generally ium and calcium, and are naturally occurring	
TABLE 4 – DET	ECTION	OF CONT.	AMIN	ANT	S WITH A <u>I</u>	PRIMAR	<u>Y</u> DRIN	KING	WATE	R STANDARD	
Chemical or Constituent (and reporting units)	Sample Date	Leve Detec	-		Range of Detections	MCL [MRDL]	(M(HG CLG) DLG]	Typical Source of Contamina		
Inorganic Contaminants		.									
Aluminum (ppm) Well 01	6/30/21	.06	0.6		N/A	1	(Erosion of natural deposits; residue from some surface water	
Well 02			.06					tre		nt processes	
Arsenic (ppb) Well 01 Well 02	6/30/21	7.4 2.9			N/A	10	0.	runoff f		of natural deposits; from orchards, from glass ctronics production waste	
Fluoride (ppm) Well 01 Well 02	6/30/21		0.38 0.44		NA	2.0		1	ter addi teeth; d	of natural deposits; wa- tive that promotes strong ischarge from fertilizer minum factories	

TABLE 5 – DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD							
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant	
Aluminum (ppm)	6/30/21		NA	200	none	Erosion of natural deposits;	
Well 01		64.4				residual from some surface	
Well 02		56.3				water treatment processes	
Total Dissolved Solids	6/25/18		NA	1000	none	Runoff/leaching from natural	
(TDS) (ppm) Well 01		220				deposits	
Well 02		310					
(EC) (umhos/cm) Specific	6/25/18		NA	1600	none	Substances that form ions	
Conductance µS/cm		300				when in water; seawater	
Well 01						influence	
Well 02		480					
Chloride (ppm)Well 01	6/25/18	16	NA	500	none	Runoff/leaching from natural	
Well 02		56				deposits; seawater influence	
Sulfate (ppm) Well 01	6/25/18	19	NA	500	none	Runoff/leaching from natural	
Well 02		16				deposits; industrial wastes	
Turbidity (Units) Well 01	6/25/18	0.47	NA	5	none	Soil runoff	
Well 02		0.40					
Color (Units) Well 01	6/25/18	5	NA	15	none	Naturally-occurring organic	
Well 02		5				materials	
Odor-Threshold (Units)	6/25/18		NA	3	none	Naturally-occurring organic	
Well 01		6				materials	
Well 02		5.7					

There are no PHGs, MCLGs, or mandatory standard health effects language for these constituents because secondary MCLs are set on the basis of aesthetics

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Larry A Shehadey Dairy is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the

potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
The water system is in violation when coliform bacteria are present in more than one sample collected during any given month	Our water system failed the drinking water standard for total coliform during April, May & June 2021due to a water leak.	April, May and June, 2021	An inspection of the water system was conducted, A leak was found to be the problem. It was repaired and an emergency disinfection unit was installed. Water samples were taken to confirm absence of total Coliform. For the rest of the year, monthly water samples tested clean.	E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short- term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, some of the elderly, and people with severely compromised immune systems.

Level 1 or Level 2 Assessment Requirement not Due to an E. coli MCL Violation

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year we were required to conduct <u>one</u> Level 1 assessment. One Level 1 assessment was completed. In addition, we were required to take one corrective action and we completed one of these actions.

Based on the results of the assessment the positive total coliform was caused by a water leak.

Corrective action taken: The leak was repaired, and an emergency chlorination unit was installed.