2019 Consumer Confidence Report

Water System Name: Kings Canyon High School

Report Date: 05-26-2020

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2019 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Kings Canyon High School Water System a (559) 305-7061 para asistirlo en español.

这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Kings Canyon High School Water System 以获得

中文的帮助: 1500 I Street Reedley CA 93654 (559) 305-7061

Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa Kings Canyon High School Water System 1500 | Street Reedley CA 93654 o tumawag sa (559) 305-7061 para matulungan sa wikang Tagalog.

Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ Kings Canyon High School Water System tại (559) 305-7061 để được hỗ trợ giúp bằng tiếng Việt.

Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau Kings Canyon High School Water System ntawm (559) 305-7061 rau kev pab hauv lus Askiv.

Type of water source(s) in use: Groundwater Well

Name & general location of source(s):

Well 01 is located on the school campus at 10026 S. Crawford Dinuba CA 93618

Time and place of regularly scheduled board meetings for public participation:

Regular board meetings are held on the 1st and 3rd Tuesdays of each month. To obtain a schedule for the meeting locations and times, you can access the agenda online page through our website at www.kcusd.com. Click on the "Our District" tab, and then click "School Board." Click the link to Agenda Online to see the schedules.

For more information, contact: Joseph Gonzalez

Phone: (559) 305-7061

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μ g/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

Page 2 of 4

deposits; leaching from

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, and 5 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 –	SAMPLIN	NG RES	SULTS	SHOW	ING THE DE	TECTIO	ON OF	COLIFORM B	ACTERIA
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections		No. of M in Viola		MCL			MCLG	Typical Source of Bacteria
Total Coliform Bacteria (state Total Coliform Rule)	(In a month) 4*		1	1	1 positive mont	hly samp	le(a)	0	Naturally present in the environment
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	(In the y 0	ear)	0	0 A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive			Human and animal fecal waste		
<i>E. coli</i> (federal Revised Total Coliform Rule)	(In the y 0	ear)	0		(b)		0	Human and animal fecal waste	
(b) Routine and repeat samples an or system fails to analyze total co TABLE 2	liform-positi	ve repeat s	sample fo	or E. coli.				t samples following	
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. o Sampl Collect	les P	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead (ppb)	2018	5		ND	0	15	0.2		Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	2018	5		0.13	0	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natura

						wood preservatives	
TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS							
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant	
Sodium (ppm)	2008	29	N/A	none	none	Salt present in the water and is generally naturally occurring	

Hardness (ppm)	2008	120	N/A	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring		
TABLE 4 – DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD								
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant		
Nitrate (mg/L)	2019	5.8	NA	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits		
1,2,3-Trichloropropane (ng/L)	2019	*47	36 - 59	5	0.7	Discharge from industrial and agricultural chemical factories; leaching from hazardous waste sites; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides.		
Dibromochloropropane (DBCP) (ng/L)	2019	160	110 - 200	200	1.7	Banned nematocide that may still be present in soils due to runoff/leaching from former use on soybeans, cotton, vineyards, tomatoes, and tree fruit		
Fluoride (mg/L)	2017	0.17	N/A	2	1	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories		
Arsenic (µg/L)	2017	2.4	N/A	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes		
Beryllium (µg/L)	2017	1.1	N/A	4	1	Discharge from metal refineries, coal burning factories, and electrical, aerospace, and defense industries		
Cadmium (μg/L)	2017	1	N/A	5	0.04	Internal corrosion of galvanized pipes; erosion of natural deposits; discharge from electroplating and industrial chemical factories, and metal refineries; runoff from waste batteries and paints		
Thallium (µg/L)	2017	1.1	N/A	2	0.1	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories		
TABLE 5 – DETE	CTION OF	CONTAMINA	NTS WITH A S	ECONDAR	<u>Y</u> DRINKIN	IG WATER STANDARD		
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant		
Specific Conductance (uS/cm)	2017	340	N/A	1600	NA	Substances that form ions when in water; seawater influence		

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Kings Canyon High School Water System is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
* 1,2,3~ Trichloropropane	Water samples taken during 2019 show levels of 1,2,3- Trichloropropane to be over the MCL	This violation was issued in February of 2018 and is ongoing.	We are providing bottled water for the students and staff as a precautionary measure. We are also seeking a state funded grant to remedy the violation by obtaining a new water source or filtration of the current source.	Some people who drink water containing 1,2,3- trichloropropane in excess of the MCL over many years may have an increased risk of getting cancer.
* Dibromochloro- propane (DBCP)	Kings Canyon High School has a continuing DBCP MCL violation which first occurred in 2015. Although levels of DBCP have dropped below the MCL, we are including this information to keep our customers informed.	The violation first occurred in 2015 and is ongoing.	We are providing bottled water for the students and staff as a precautionary measure. We are also seeking a state funded grant to remedy the violation by obtaining a new water source or filtration of the current source.	Some people who use water containing DBCP in excess of the MCL over many years may experience reproductive difficulties and may have an increased risk of getting cancer.
*Total Coliform Bacteria	Kings Canyon High School had a Total Coliform Bacteria MCL Violation during the month of March 2019.	The violation occurred on 03-07-2019. We returned to compliance on 03/12/2019 when sample results showed bacteria to no longer be present in the water system.	We chlorinated and flushed the water system. We completed a Level 1 Assessment of the water system and corrected any deficiencies which may have been responsible for the violation. The deficiencies were corrected on 03-11- 2019.	Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.