2019 Consumer Confidence Report | water System Name: Americ | an Union Elemental | ry Report Date: | 5/3/2020 | |--|---|--|--| | We test the drinking water qua
the results of our monitoring fo | lity for many constituer
r the period of January | nts as required by state and fedo
1 - December 31, 2018 and may | eral regulations. This report show
include earlier monitoring data. | | Este informe contiene inform entienda bien. | ación muy importante | e sobre su agua potable. Trad | úzcalo ó hable con alguien que l | | Type of water source(s) in use: | Ground water | | | | Name & general location of sour 93706 | ce(s): Well 001 Sour | th East Corner of property, 2801 | w. Adams Ave Fresno Ca. | | Drinking Water Source Assessm
Control Board at 559-447-3300 | | | tacting the State Water Resource | | Time and place of regularly sche | duled board meetings f | or public participation: N/A | | | For more information, contact: | Randy Morris | Phone: (| 559) 495-5626 | #### TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. **Treatment Technique (TT):** A required process intended to reduce the level of a contaminant in drinking water. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions. Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. ND: not detectable at testing limit ppm: parts per million or milligrams per liter (mg/L) ppb: parts per billion or micrograms per liter (µg/L) ppt: parts per trillion or nanograms per liter (ng/L) ppq: parts per quadrillion or picogram per liter (pg/L) pCi/L: picocuries per liter (a measure of radiation) The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. ### Contaminants that may be present in source water include: - *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health. Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. | TABLE 1 – | SAMPLING | RESULTS SHOW | ING THE DETECTION O | F COLIFO | RM BACTERIA | |--|---------------------------------|-------------------------------|--|----------|--------------------------------------| | Microbiological Contaminants (complete if bacteria detected) | Highest No.
of
Detections | No. of Months in
Violation | MCL | MCLG | Typical Source of Bacteria | | Total Coliform Bacteria
(state Total Coliform Rule) | (In a mo.)
<u>0</u> | 0 | 1 positive monthly sample | 0 | Naturally present in the environment | | Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule) | (In the year)
0 | 0 | A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive | | Human and animal fecal waste | | E. coli
(federal Revised Total
Coliform Rule) | (In the year)
0 | 0 | (a) | 0 | Human and animal fecal waste | (a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*. | TABLE 2 · | – SAMPL | ING RESU | JLTS SHOV | VING THE | DETE | CTION | OF LEAD AND | COPPER | |--|----------------|--|---|------------------------------|------|-------|---|---| | Lead and Copper
(complete if lead or copper
detected in the last sample set) | Sample
Date | No. of
Samples
Collecte
d | 90 th
Percentile
Level
Detected | No. Sites
Exceeding
AL | AL | РНG | No. of Schools
Requesting Lead
Sampling | Typical Source of
Contaminant | | Lead (ppb) | | | | 0 | 15 | 0.2 | 0 | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits | | Copper (ppm) | | sestaalida kallida kassidda kallida ka | And collected by the control of | 0 | 1.3 | 0.3 | Not applicable | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | SWS CCR Form Revised January 2019 | and the state of t | Abottiiii kaastii vaa ii taa kaastii ka | - SAMPLING | RESULTS FOR | SODIUM A | AND HARD | NESS | |--|---|-------------------------------|------------------------|--|--------------------------|--| | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | | Sodium (ppm) Hardness (ppm) | N/A
N/A | N/A
N/A | N/A
N/A | none | none | Salt present in the water and is generally naturally occurring Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | | TABLE 4 – DET | ECTION OF | CONTAMIN | ANTS WITH A | PRIMARY | DRINKING | WATER STANDARD | | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | | Nitrate as N (ppm) | 1/142019
4/17/2019
7/19/2019 | 4.6
5.7
5.4 | 4.6 – 5.7 | 10 as N | 10 as N | Runoff and leaching from
fertilizer use; leaching from
septic tanks and sewage;
erosion of natural deposits | | Gross Alpha (pCi/L) | 1/14/2019
4/17/2019
7/19/2019
10/22/2019 | 22.6
4.86
15.6
15.63 | 4 - 15.63 | 15 | 0 | Erosion of natural deposits | | Arsenic (μg/L) | | | | 10 | .004 | Erosion of natural deposits;
runoff from orchards; glass and
electronics production wastes | | Chromium (μg/L) | | | | 50 | 1000 | Discharge from steel and pulp
mills and chrome plating;
erosion of natural deposits | | 1,2,3-TCP | 2/15/2019
5/13/2019
8/09/2019
11/22/2019 | .070
.061
.062
.078 | .061078 | .005 | .0007 | Discharge from industrial and agricultural chemical factories; leaching from hazardous waste sites; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides. | | Barium(μ g/L) | | | | 1 | 2 | Discharges of oil drilling wastes
and from metal refineries;
erosion of natural deposits | | Uranium (pCi/L) | 1/14/2019
4/17/2019
7/19/2019
10/11/2019 | 14
19
31
25 | 14 - 31 | 20 | .43 | Erosion of natural deposits | | TABLE 5 – DETE | CTION OF C | CONTAMINA | NTS WITH A <u>S</u> 1 | ECONDAR | <u>Y</u> DRINKIN | G WATER STANDARD | | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | | Aluminum (μg/L) | | | | 1 | .06 | Erosion of natural deposits;
residue from some surface
water treatment processes | | | | | | | | | | AND THE STATE OF T | TABLE 6 | - DETECTIO | N OF UNREGUI | LATED CO | NTAMINA | YTS | | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detections | Salare and the salar and | tion Level | Health Effects Language | | | 1 | | | |---|---|--|--| | | 1 | | | | 1 | 1 | | | | | 1 | | | | | | | The state of s | ### Additional General Information on Drinking Water Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [INSERT NAME OF UTILITY] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4701) or at http://www.epa.gov/lead. # Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement | VIOLATION O | F A MCL, MRDL, AI | , TT, OR MONITORING | G AND REPORTING REQ | UIREMENT | |--------------------|------------------------------------|--|---|--| | Violation | Explanation | Duration | Actions Taken to Correct
the Violation | Health Effects
Language | | Uranium
(pCi/L) | Exceedence of
regulatory
MCL | 1/14/2019 1 st quarter 4/17/2019 2 nd quarter 7/19/2019 3 rd quarter 10/11/2019 4 th quarter | Public notification/ investigating treatment technique. | Some people who drink water containing uranium in excess of the MCL over many years may have kidney problems or an increased risk of getting cancer. | | 1,2,3 TCP | Exceedence of regulatory MCL | 2/15/20191 st quarter 5/13/2019 2 nd quarter 8/09/20193 rd quarter 11/22/20194 th quarter | Public Notification increased monitoring / investigate treatment technique | Some people who drink water containing uranium in excess of the MCL over many years may have kidney problems or an increased risk of getting cancer | |---|------------------------------|--|---|---| | жения метруальную при | | AND STANKER IN CONTROL OF THE STANKER STANKE | WASSERBAUMSETTAGE HIGGSLUTHER PROPERTY OF THE | | ## For Water Systems Providing Groundwater as a Source of Drinking Water | FECAL | | 7 – SAMPLING
POSITIVE GR | | | | |---|----------------------------|-----------------------------|---------------|--------------------------|-------------------------------| | Microbiological Contaminants (complete if fecal-indicator detected) | Total No. of
Detections | Sample Dates | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | | E. coli | (In the year)
0 | | 0 | (0) | Human and animal fecal waste | | Enterococci | (In the year)
0 | | TT | n/a | Human and animal fecal waste | | Coliphage | (In the year)
0 | | TT | n/a | Human and animal fecal waste | ## Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Groundwater TT | SPECIAL | NOTICE OF FECAL INI | DICATOR-POSITIVE | GROUNDWATER SOURCE S | SAMPLE | |--|---|--|--|--| AND THE PROPERTY OF PROPER | | | ANY CONTRACTOR OF THE PROPERTY | des et englesse en | | | SPECIAL NOTICE FOR | UNCORRECTED SIG | GNIFICANT DEFICIENCIES | - Company of the Comp | | | | | | | | | ······································ | | | | | | | | | | | a destruira | Materia e e e e e e e e e e e e e e e e e e e | een veen valuus valta oo | | | | and the state of t | VIOLA | TION OF GROUNDY | VATER TT | | | TT Violation | Explanation | Duration | Actions Taken to Correct the Violation | Health Effects
Language | | | | | | **** | | | | | | | | | | | | | | ered water must: equal toNTU in 95% of measurements in a monNTU for more than eight consecutive hoursNTU at any time. | |--| | equal toNTU in 95% of measurements in a monNTU for more than eight consecutive hours. | | NTU for more than eight consecutive hours. | | | | NTU at any time. | | | | | | | | | | A PARTY DE COME | | ACTIONS Taken to Correct Health Effects | | ATER TT Actions Taken to Correct the Violation Health Effects Language | | Actions Taken to Correct Health Effects | | Actions Taken to Correct Health Effects | | Actions Taken to Correct Health Effects | | Actions Taken to Correct the Violation Health Effects Language | | Actions Taken to Correct Health Effects | | a good indi
ance with fil | Summary Information for Federal Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements Level 1 or Level 2 Assessment Requirement not Due to an E. coli MCL Violation Consumer Confidence Report Page 6 of 7 Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments. During the past year we were required to conduct [INSERT NUMBER OF LEVEL 1 ASSESSMENTS] Level 1 assessment(s). [INSERT NUMBER OF LEVEL 1 ASSESSMENTS] Level 1 assessment(s) were completed. In addition, we were required to take [INSERT NUMBER OF CORRECTIVE ACTIONS] corrective actions and we completed [INSERT NUMBER OF CORRECTIVE ACTIONS] of these actions. During the past year [INSERT NUMBER OF LEVEL 2 ASSESSMENTS] Level 2 assessments were required to be completed for our water system. [INSERT NUMBER OF LEVEL 2 ASSESSMENTS] Level 2 assessments were completed. In addition, we were required to take [INSERT NUMBER OF CORRECTIVE ACTIONS] corrective actions and we completed [INSERT NUMBER OF CORRECTIVE ACTIONS] of these actions. | NONE REQUIRED. | | | | |----------------|--|--|--| | | | | | ### Level 2 Assessment Requirement Due to an E. coli MCL Violation *E. coli* are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely-compromised immune systems. We found *E. coli* bacteria, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) identify problems and to correct any problems that were found during these assessments. We were required to complete a Level 2 assessment because we found *E. coli* in our water system. In addition, we were required to take [INSERT NUMBER OF CORRECTIVE ACTIONS] corrective actions and we completed [INSERT NUMBER OF CORRECTIVE ACTIONS] of these actions. | NONE REQUIRED. | | | |----------------|------|------| | |
 |
 | | | | | | | |
 |