APR 0 2 2024. BY: L. Bender Approxed ## 2023 Consumer Confidence Report ## **Water System Information** Water System Name: South Shore Recreation Area Report Date: 3/25/2024 Type of Water Source(s) in Use: Groundwater Name and General Location of Source(s): Tallac Well – Tallac Historic Site on Valhalla Road, water system is locally know as the Fallen Leaf Water System Drinking Water Source Assessment Information: December 2002, a copy is available at El Dorado County Time and Place of Regularly Scheduled Board Meetings for Public Participation: N/A For More Information, Contact: Michael Alexander (530) 543-2864 michael.t.alexander@usda.gov ## **About This Report** We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2023 and may include earlier monitoring data. # Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong) Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse South Shore Recreation a 530-543-2864 para asistirlo en español. Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 [Enter Water System Name]以获得中文的帮助: [Enter Water System's Address][Enter Water System's Phone Number]. Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa [Enter Water System's Name and Address] o tumawag sa [Enter Water System's Phone Number] para matulungan sa wikang Tagalog. Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ [Enter Water System's Name] tại [Enter Water System's Address or Phone Number] để được hỗ trợ giúp bằng tiếng Việt. Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau [Enter Water System's Name] ntawm [Enter Water System's Address or Phone Number] rau kev pab hauv lus Askiv. **Terms Used in This Report** | Term | Definition | |--|---| | Level 1 Assessment | A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. | | Level 2 Assessment | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. | | Maximum Contaminant
Level (MCL) | The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. | | Maximum Contaminant
Level Goal (MCLG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). | | Maximum Residual Disinfectant Level (MRDL) | The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | Maximum Residual
Disinfectant Level Goal
(MRDLG) | The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | Primary Drinking Water Standards (PDWS) | MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. | | Public Health Goal
(PHG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. | | Regulatory Action Level (AL) | The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. | | Secondary Drinking
Water Standards
(SDWS) | MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. | | Treatment Technique (TT) | A required process intended to reduce the level of a contaminant in drinking water. | | Variances and
Exemptions | Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions. | | ND | Not detectable at testing limit. | | ppm | parts per million or milligrams per liter (mg/L) | | ppb | parts per billion or micrograms per liter (µg/L) | | ppt | parts per trillion or nanograms per liter (ng/L) | | ppq | parts per quadrillion or picogram per liter (pg/L) | | pCi/L | picocuries per liter (a measure of radiation) | # Sources of Drinking Water and Contaminants that May Be Present in Source Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. ## Regulation of Drinking Water and Bottled Water Quality In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. ## **About Your Drinking Water Quality** ### **Drinking Water Contaminants Detected** Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. Table 1. Sampling Results Showing the Detection of Coliform Bacteria Complete if bacteria are detected. | Microbiological
Contaminants | Highest No.
of
Detections | No. of
Months in
Violation | MCL | MCLG | Typical Source
of Bacteria | |---------------------------------|---------------------------------|----------------------------------|--------|------|---| | E. coli | 3 | 3 | (a) | 0 | Human and
animal fecal
waste | | Total Coliform
Bacteria | 4 | 4 | Absent | 0 | Coliforms are naturally present in the environment. | ⁽a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*. Table 2. Sampling Results Showing the Detection of Lead and Copper Complete if lead or copper is detected in the last sample set. | Lead and
Copper | Sample Date | No. of
Samples
Collected | 90 th Percentile
Level Detected | No. Sites
Exceeding AL | AL | PHG | Typical Source
of
Contaminant | |--------------------|-------------|--------------------------------|---|---------------------------|-----|-----|---| | Lead
(ppb) | 9/30/2023 | 10 | 4.3 | 0 | 15 | 0.2 | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits | | Copper (ppm) | 9/30/2023 | 10 | 0.034 | 0 | 1.3 | 0.3 | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from -wood-preservatives- | Table 3. Sampling Results for Sodium and Hardness | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL | PHG
(MCLG) | Typical Source of
Contaminant | |---|----------------|-------------------|---------------------|------|---------------|--| | Sodium (ppm) | 12/14/2004 | 4.9 | | None | | Salt present in the water and is generally naturally occurring | | Hardness (ppm) | 12/14/2004 | 48 | | None | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally | |----------------|------------|----|-------------|------|--| | | | | Application | | occurring | Table 4. Detection of Contaminants with a Primary Drinking Water Standard | Chemical or
Constituent
(and
reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source
of
Contaminant | |--|--|----------------------|------------------------|---------------|--------------------------|---| | Antimony (Ug/L) | 11/17/2022 | 1 | N/A | 6 | NA | Discharge from petroleum refineries, fire retardant, ceramics, electronics, solder | | Arsenic (Ug/L) | 8/25/2010
12/16/2013
6/19/2019
11/17/2022 | 7
6.5
7.3
7 | N/A | 10 | 0.004 | Erosion of natural deposits, runoff from orchards, glass, and electronics production waste. | | Chromium (Ug/L) | 11/17/2022 | 1 | N/A | 50 | N/A | Discharge from
steel and pump
mills, erosion of
natural deposits | | Copper (mg/L) | 11/17/2022 | 0.006 | N/A | 1.3 | 0.3 | Corrosion of household plumbing systems, erosion of natural deposits | | Fluoride (mg/L) | 11/17/2022 | <0.1 | | 2.0 | 1.0 | Water additive which promotes strong teeth; erosion of natural deposits; discharge from | | | fertilizer and | |---|----------------| | | aluminum | | _ | factories | Table 5. Detection of Contaminants with a Secondary Drinking Water Standard | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of
Detections | SMCL | PHG
(MCLG) | Typical Source
of
Contaminant | |---|------------------------|-------------------|------------------------|------|---------------|--| | Chloride (mg/L) | 4/27/2000
8/25/2010 | 0.6
0.5 | N/A | 500 | N/A | Runoff/leaching from natural deposits, seawater influence. | | Sulfate (mg/L) | 4/27/2000
8/25/2010 | 3.1
6.0 | N/A | 500 | N/A | Runoff/leaching from natural deposits; industrial wastes. | | Total Dissolved
Solids (TDS)
(mg/L) | 4/27/2000 | 96 | N/A | 1000 | N/A | Runoff/leaching from natural deposits. | | Zinc (mg/L) | 4/27/2000 | 0.01 | N/A | 5 | N/A | Runoff/leaching from natural deposits; industrial wastes. | Table 6. Detection of Unregulated Contaminants | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | Notification
Level | Health Effects | |---|----------------|-------------------|---------------------|-----------------------|----------------| | | | | | | | ## Additional General Information on Drinking Water Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. South Shore Recreation is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead. Additional Special Language for Nitrate, Arsenic, Lead, Radon, and Cryptosporidium: [Enter Additional Information Described in Instructions for SWS CCR Document] Arsenic: For systems that detect arsenic above 5 μ g/L, but below or equal to 10 μ g/L, the following language is REQUIRED: While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the cost of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. #### Radon: We regularly monitor the water supply for various contaminants. We detected radon in the finished water supply in one sample tested in 2015. We are required to test every 9 years. We will test radon again in 2024. There is no federal regulation for radon levels in drinking water. Exposure over a long period of time to air transmitting radon may cause adverse health effects. Radon is a radioactive gas that you cannot see, taste, or smell. It is found throughout the U.S. Radon can move up through the ground and into a home through cracks and holes in the foundation. Radon can build up to high levels in all types of homes. Radon can also get into indoor air when released from tap water from showering, washing dishes, and other household activities. Compared to radon entering the home through soil, radon entering the home through tap water will in most cases be a small source of radon in indoor air. Radon is a known human carcinogen. Breathing air containing radon can lead to lung cancer. Drinking water containing radon may also cause increased risk of stomach cancer. If you are concerned about radon in your home, test the air in your home. Testing is inexpensive and easy. You should pursue radon removal for your home if the level of radon in your air is 4 picocuries per liter of air (pCi/L) or higher. There are simple ways to fix a radon problem that are not too costly. For additional information, call your State radon program (1-800-745-7236, the U.S. EPA Safe Drinking Water Act Hotline (1-800-426-4791), or the National Safe Council Radon Hotline (1-800-767-7236). State Revised Total Coliform Rule (RTCR): [Enter Additional Information Described in Instructions for SWS CCR Document] Revised January 2024 #### State RTCR - ✓ Treatment Technique (TT) Violation: When a water system exceeds a TT trigger specified in Cal. Code Regs., Title 22, § 64426.7(b) and (c) and then fails to conduct the required Level 1 or Level 2 Assessment or corrective actions within the timeframe specified in Cal. Code Regs., Title 22, § 64426.8. See Item X for an explanation of a *E. coli* TT requirement. - ✓ Treatment Technique (TT) Violation: For a seasonal system, failure to complete the requirements in Cal. Code Regs., Title 22, § 64426.9. Under the State RTCR, a seasonal system means a non-community water system (i.e., nontransient-noncommunity water system or a transient-noncommunity water system) that is not operated as a public water system on a year-round basis and starts up and shuts down at the beginning and end of each operating session. # Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement | Violation | Explanation | Duration | Actions Taken to
Correct Violation | Health Effects Language | |-----------|---|----------|---|--| | 1 | 9/8/2023 water samples from the distribution system | 1 week | Introduced chlorine to the water storage tank and flushed with chlorination throughout the distribution system. | Coliforms are naturally present in the environment; as well as feces; fecal coliforms and E. coli only come from human and animal fecal waste. | ## For Water Systems Providing Groundwater as a Source of Drinking Water Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples | Microbiological Contaminants (complete if fecal- indicator detected) | Total No. of
Detections | Sample
Dates | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of
Contaminant | |--|----------------------------|----------------------|---------------|--------------------------|----------------------------------| | E. coli | (In the year) | 9/6/2023
9/8/2023 | 0 | (0) | Human and animal fecal-
waste | | Enterococci | (In the year)
0 | N/A | Π | N/A | Human and animal fecal waste | | Coliphage | (In the year)
0 | N/A | TT | N/A | Human and animal fecal waste | Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Violation of a Groundwater TT # Special Notice of Fecal Indicator-Positive Groundwater Source Sample: N/A # Special Notice for Uncorrected Significant Deficiencies: N/A Table 9. Violation of Groundwater TT | Violation | Explanation | Duration | Actions Taken to Correct Violation | Health Effects
Language | |-----------|-------------|----------|------------------------------------|----------------------------| | None | | | | | # For Systems Providing Surface Water as a Source of Drinking Water Table 10. Sampling Results Showing Treatment of Surface Water Sources | Treatment Technique (a) (Type of approved filtration technology used) | Not Applicable | | |--|---|--| | Turbidity Performance Standards (b) (that must be met through the water treatment process) | Turbidity of the filtered water must: | | | | 1 – Be less than or equal to [Enter Turbidity Performance
Standard to Be Less Than or Equal to 95% of Measurements
in a Month] NTU in 95% of measurements in a month. | | | | 2 – Not exceed [Enter Turbidity Performance Standard Not to Be Exceeded for More Than Eight Consecutive Hours] NTU for more than eight consecutive hours. | | | | 3 – Not exceed [Enter Turbidity Performance Standard Not to Be Exceeded at Any Time] NTU at any time. | | | Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1. | N/A | | | Highest single turbidity measurement during the year | N/A | | | Number of violations of any surface water treatment requirements | N/A | | ⁽a) A required process intended to reduce the level of a contaminant in drinking water. ⁽b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements. ### **Summary Information for Violation of a Surface Water TT** #### Table 11. Violation of Surface Water TT | Violation | Explanation | Duration | Actions Taken to Correct Violation | Health Effects
Language | |-----------|-------------|----------|------------------------------------|----------------------------| | None | | | | | ### Summary Information for Operating Under a Variance or Exemption N/A Summary Information for Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements ### Level 2 Assessment Requirement Due to an E. coli MCL Violation *E. coli* are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely compromised immune systems. We found *E. coli* bacteria, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) identify problems and to correct any problems that were found during these assessments. We were required to complete a Level 2 assessment because we found *E. coli* in our water system. In addition, we were required to take three corrective actions and we completed three of these actions. If a water system detects *E. coli* and has violated the *E. coli* MCL, include one or more the following statements to describe any noncompliance, as applicable: We had an E. coli-positive repeat sample following a total coliform positive routine sample. Because water samples from the distribution system tested present for E. Coli and total coliform bacteria, the water storage tank and distribution system were disinfected. In addition, seals were improved for the cathodic protection covers on top of the water storage tank. Finally, loose paint was removed from the surface of the water storage tank access lid.