# 2024 Consumer Confidence Report

Water System Name: RICHVALE ELEMENTARY SCHOOL # CA0400062 Report Date: July 2025

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2024 and may include earlier monitoring data.

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse RICHVALE ELEMENTARY SCHOOL a 530-868-1281 ext. 8106 para asistirlo en español.

**Type of water source(s) in use:** According to SWRCB records, this Source is Groundwater.

Name & general location of source(s): Your water comes from 1 source: Main Well

5236 Church Street, Richvale CA

**Drinking Water Source Assessment information:** Assessment was done using the Default Groundwater System Method A source water assessment was conducted for the Main Well in 2002 and updated in 2010.

#### **Acquiring Information:**

For more information you may contact:

Butte County Public Health Department, Division of Environmental Health

Butte County Environmental Health Program Manager

202 Mira Loma Drive, Oroville, CA 95965. You may request a summary of the assessment be sent to you by contacting the Department at the above address or by calling (530) 552-3880.

Time and place of regularly scheduled board meetings for public participation: Board meetings are held on the second

Wednesday of the month at 6 p.m. at Biggs Unified School District's Board Room at 300 B Street, Biggs CA 95917

For more information, contact: John Strattard, Richvale Elementary School Phone: (530) 868-1281 x 8106

#### TERMS USED IN THIS REPORT

**Level 1 Assessment**: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

**Level 2 Assessment**: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

**Maximum Contaminant Level Goal (MCLG)**: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

**Primary Drinking Water Standards (PDWS)**: MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

**Public Health Goal (PHG)**: The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

**Regulatory Action Level (AL)**: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

**Secondary Drinking Water Standards (SDWS)**: MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

**Treatment Technique (TT)**: A required process intended to reduce the level of a contaminant in drinking water.

**Variances and Exemptions**: Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.

**ND**: not detectable at testing limit

**ppm**: parts per million or milligrams per liter (mg/L)

**ppb**: parts per billion or micrograms per liter (μg/L)

**ppt**: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water: The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

### Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

**Regulation of Drinking Water and Bottled Water Quality:** In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

**About Your Drinking Water Quality - Drinking Water Contaminants Detected:** Tables 1, 2, 3, 4, 5, 6 and A list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

| TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA |                                 |                            |     |      |                              |  |  |
|-----------------------------------------------------------------------|---------------------------------|----------------------------|-----|------|------------------------------|--|--|
| Microbiological<br>Contaminants                                       | Highest Number of<br>Detections | No. of months in violation | MCL | MCLG | Typical Source of Bacteria   |  |  |
| E. Coli                                                               | (in the year 2024)              | 0                          | (a) | 0    | Human and animal fecal waste |  |  |

<sup>(</sup>a) Routine and repeat samples are total coliform-positive and either is E. coli-positive or system fails to take repeat samples following E. coli-positive routine sample or system fails to analyze total coliform-positive repeat sample for E. coli.

| TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER                |                   |                                |                                               |                              |                        |     |     |                                                                                                                               |
|------------------------------------------------------------------------------------|-------------------|--------------------------------|-----------------------------------------------|------------------------------|------------------------|-----|-----|-------------------------------------------------------------------------------------------------------------------------------|
| Lead and Copper<br>(complete if lead or copper<br>detected in the last sample set) | Sample<br>Date    | No. of<br>Samples<br>Collected | 90 <sup>th</sup> Percentile<br>Level Detected | No. Sites<br>Exceeding<br>AL | Range of<br>Detections | AL  | PHG | Typical Source of Contaminant                                                                                                 |
| Lead (ppb)                                                                         | (Jun 21,<br>2022) | 5                              | 0                                             | 0                            | n/a all ND             | 15  | 0.2 | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits |
| Copper (ppm)                                                                       | (Jun 21,<br>2022) | 5                              | 0.121                                         | 0                            | 0.096 - 0.121          | 1.3 | 0.3 | Internal corrosion of household<br>plumbing systems; erosion of<br>natural deposits; leaching from<br>wood preservatives      |

| TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS |                |                   |                        |      |               |                                                                                                                      |
|----------------------------------------------------|----------------|-------------------|------------------------|------|---------------|----------------------------------------------------------------------------------------------------------------------|
| Chemical or Constituent (and reporting units)      | Sample<br>Date | Level<br>Detected | Range of<br>Detections | MCL  | PHG<br>(MCLG) | Typical Source of Contaminant                                                                                        |
| Sodium (ppm)                                       | (1992)         | 8.0               | n/a                    | None | None          | Salt present in the water and is generally naturally occurring                                                       |
| Hardness (ppm)                                     | (1992)         | 79                | n/a                    | None | None          | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring |

#### TABLE 4 – DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD **PHG Chemical or Constituent** Level **MCL** Sample Range of **Typical Source of Contaminant** (MCLG) (and reporting units) Date Detected **Detections** [MRDL] [MRDLG] 0.004 10 Erosion of natural deposits; runoff from n/a Arconic (ug/L)

| Arsenic (µg/L)          | (2024) | 2     |     |    |       | production wastes.                                                                                                |
|-------------------------|--------|-------|-----|----|-------|-------------------------------------------------------------------------------------------------------------------|
| Chromium [Total] (µg/L) | (2024) | 10    | n/a | 50 | (100) | Discharge from steel and pulp mills and chrome plating; erosion of natural deposits                               |
| Nitrate as N (mg/L)     | (2024) | 1.1   | n/a | 10 |       | Runoff and leaching from fertilizer use;<br>leaching from septic tanks and sewage;<br>erosion of natural deposits |
| Gross Alpha (pCi/L)     | (2016) | 0.466 | n/a | 15 | (0)   | Erosion of natural deposits.                                                                                      |

While the Gross Alpha test result was below the detection limit for required reporting, the result was higher than the (MCLG).

| TABLE 5 – DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD |                |                |                        |      |               |                                                              |  |
|-------------------------------------------------------------------------------------|----------------|----------------|------------------------|------|---------------|--------------------------------------------------------------|--|
| Chemical or Constituent (and reporting units)                                       | Sample<br>Date | Level Detected | Range of<br>Detections | SMCL | PHG<br>(MCLG) | Typical Source of Contaminant                                |  |
| Chloride (mg/L)                                                                     | (2005)         | 6.0            | n/a                    | 500  | n/a           | Runoff/leaching from natural deposits; seawater influence.   |  |
| Specific Conductance<br>(μS/cm)                                                     | (2005)         | 190            | n/a                    | 600  | n/a           | Substances that form ions when in water; seawater influence. |  |
| Total Dissolved Solids<br>(TDS)                                                     | (2005)         | 160            | n/a                    | 1000 | n/a           | Runoff/leaching from natural deposits.                       |  |
| Turbidity (NTU)                                                                     | (2005)         | 0.29           | n/a                    | 5    | n/a           | Soil runoff.                                                 |  |

Note that the information above is more than 9 years old, and therefore, not required to be reported. It is included for reference only as it is the most recent information available.

| TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS |                |                |                     |                    |                                                                                                                                                                                             |  |  |
|-------------------------------------------------|----------------|----------------|---------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Chemical or Constituent (and reporting units)   | Sample<br>Date | Level Detected | Range of Detections | Notification Level | Health Effects Language                                                                                                                                                                     |  |  |
| Hexavalent Chromium (µg/L) **                   | (2017)         | 5.2            | n/a                 | 100 (US EPA)       | Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits |  |  |
| Vanadium (ug/L)                                 | (2024)         | 28             | n/a                 | 50                 | Vanadium exposures resulted in developmental and reproductive effects in rats.                                                                                                              |  |  |

<sup>\*\*</sup> Note that the MCL for Hexavalent Chromium was 10 µg/L in California. It was suspended in 2017. The Hexavalent Chromium MCL was reinstated with an MCL of 10 µg in the Primary Drinking Water Standard as of October 1, 2024. New testing was required by April 1, 2025.

# TABLE 7 – SUMMARY INFORMATION FOR VIOLATION OF A MCL, MRDL, AL, TT OR MONITORING REPORTING REQUIREMENT

## **NONE IN 2024**

#### TABLE 8 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLES

#### **NONE DETECTED IN 2024**

| TABLE A – ADDITIONAL DETECTIONS (This information is not required to be reported.)                                                                 |        |     |     |     |     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-----|-----|-----|--|--|
| Chemical or Constituent (and reporting units)  Sample Date  Level Detected  Range of Detections  Notification Level  Typical Source of Contaminant |        |     |     |     |     |  |  |
| pH (units) [lab code 1925]                                                                                                                         | (2005) | 7.8 | n/a | n/a | n/a |  |  |

# **Additional General Information on Drinking Water**

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. *RICHVALE ELEMENTARY SCHOOL* is responsible for providing high quality drinking water and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact a California accredited drinking water testing laboratory or a local water testing service that works with one of these accredited laboratories. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at <a href="http://www.epa.gov/safewater/lead">http://www.epa.gov/safewater/lead</a>.

# **Source Water Protection Tips for Consumers**

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system.
- Dispose of chemicals properly; take used motor oil to a recycling center.

Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use U.S. EPA's Adopt Your Watershed <a href="https://nepis.epa.gov/Exe/ZyPDF.cgi/20004I2M.PDF?Dockey=20004I2M.PDF">https://nepis.epa.gov/Exe/ZyPDF.cgi/20004I2M.PDF?Dockey=20004I2M.PDF</a>.

### **Water Conservation Tips for Consumers**

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference – try one today and soon it will become second nature.

- Take short showers a 5 minutes shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair, and shaving and save up to 500 gallons a month.
- Use a water-efficient showerhead. They are inexpensive, easy to install, and can save you up to 750 gallons a
  month.
- Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- Water plants only when necessary.
- Fix leaking toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month.
- Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.
- Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family
  effort to reduce next month's water bill!
- Visit <a href="https://www.epa.gov/watersense">https://www.epa.gov/watersense</a> for more information.