2020 Consumer Confidence Report

Water System Name: **OROVILLE MOBILE HOME PARK**

Report Date: August 2021

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2020 and may include earlier monitoring data.

Language in Spanish:Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse [OROVILLE MOBILE nter Water System's Name Here] a [Enter Water System's Address or Phone Number Here] para asistirlo en español.

Type of water source(s) in use: According to SWRCB records, this Source is Groundwater.

Name & general location of source(s): Only Well

4588 Pacific Heights Road, Oroville CA 95965

Drinking Water Source Assessment information: <u>This Assessment was done using the Default Groundwater System Method</u> A source water assessment was conducted for the ONLY WELL of the OROVILLE MOBILE HOME PARK water system in November 2000.

Only Well - is considered most vulnerable to the following activities not associated with any detected contaminants:

Metal plating/ finishing/fabricating

Septic systems - high density [>1/acre]

Discussion of Vulnerability There have been no contaminants detected in the water supply, however the source is still considered vulnerable to activities located near the drinking water source. The most significant PCA's for the well serving the Oroville Mobile Home Park are those activities associated with metal plating/fabricating businesses, automobile body/repair shops, and onsite sewage disposal activities.

Acquiring Information: A copy of the complete assessment is available from Butte County Public Health Department, Division of Environmental Health, and 202 Mira Loma Drive, Oroville, CA 95965. You may request a summary of the assessment be sent to you by contacting the Department at the above address or by calling (530) 552-3880.

 Time and place of regularly scheduled board meetings for public participation:
 Regularly-scheduled County meetings are

 held. The State Water Resources Control Board may offer other opportunities.
 Regularly-scheduled County meetings are

For more information, contact: Colleen Fields, Regional Manager, BoaVida Phone: (9

(916) 542-2605

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μ g/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L) **pCi/L**: picocuries per liter (a measure of radiation) **Sources of Drinking Water and Contaminants that May Be Present in Source Water:** The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants*, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality: In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality - Drinking Water Contaminants Detected: Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 –	SAMPLIN	NG RES	SULT	IS SHOW	ING THE DE	TECTI	ON OF	COLIFORM B	ACTERIA
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections		No. of Months in Violation		N	1CL		MCLG	Typical Source of Bacteria
Total Coliform Bacteria (state Total Coliform Rule)	(in a month)			0	1 positive month	nly sampl	e <mark>^(a)</mark>	0	Naturally present in the environment
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	(0 in the year)		0		A routine sample sample are total and one of these coliform or <i>E. co</i>	coliform is also fe	positive, ecal		Human and animal fecal waste
<i>E. coli</i> (federal Revised Total Coliform Rule)	(0 in the year)			0		<mark>(b)</mark>		0	Human and animal fecal waste
(a) Two or more positive monthly (b) Routine and repeat samples ar or system fails to analyze total co TABLE 2	e total colifo liform-positi	rm-positi ve repeat	ve and sample	either is <i>E. co</i> e for <i>E. coli</i> .	1 7		1	tt samples following	1 1
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. Samp Collec	oles	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead (ppb)	(2020)	5		0		15	0.2		Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	(2020)	5		0	0	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

		TABLE 3	B – SAM	IPLING I	RESULTS FO	R SODI	UM A	ND HA	RDNESS		
		Sample Date		evel tected	Range of Detections			PHG MCLG)	Typica	Typical Source of Contaminant	
Sodium (ppm)		(2018)		37	n/a	a None		None	Salt presen naturally o	t in the water and is generally ccurring	
Hardness (ppm) ((2018)		184	n/a	None		None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring		
TABLE 4 – I	DETE	CTION (OF CON	TAMIN	ANTS WITH	A <u>PRIM</u>	ARY	DRINK	ž – ž	ER STANDARD	
Chemical or Constituent (and reporting units)		Sample Date		evel tected	Range of Detections	MCL [MRDL]		PHG MCLG) 1RDLG]			
Nitrate as N (mg/L)	Nitrate as N (mg/L) (202		1.0		n/a			10	use; leaching from septic tanks and sewage; erosion of natural deposits		
Nitrate + Nitrite as N (mg/L)	(2018)			0.9	n/a	10		10	2) Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits		
TABLE 5 – DH	ETEC	TION OI	F CONT	CAMINA	NTS WITH A	<u>SECON</u>	DARY	<u>Y</u> DRIN	KING WA	TER STANDARD	
Chemical or Constituent (and reporting units)	stituent Sample Dat		TO	Level etected	Range of Detections	MCL		HG CLG) 1	Typical Sources of Contaminant		
Chloride (mg/L)		(2018)		36	n/a	500	n		Runoff/leach eawater inf	ing from natural deposits; luence	
Specific Conductance (umhos/cm)		(2018)		560	n/a	1600	n	/a v	vater; seaw	that form ions when in ater influence	
Sulfate (mg/L)		(2018)		26	n/a	500	n		Runoff/leach ndustrial wa	ing from natural deposits; astes	
Total Dissolved Solids (mg/L)		(2018)		310	n/a	1000			Runoff/leaching from natural deposits		
Turbidity (NTU)		(2018)		0.2	n/a	5	5 n/		Soil runoff		
		TABLE	6 – DET	ΓΕСΤΙΟ	N OF UNREG	ULATE	D CO	NTAMI	NANTS		
Chemical or Constituent (and reporting units)	Samp	mple Date		l æd l	Range of Detections	Notificatio Level		ⁿ Typi	Typical Sources of Contaminant		
Boron (mg/L)	(2	(2018)			n/a	1		fetal	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.		
Vanadium (mg/L)	mg/L) (2018)		0.006	6	n/a	0.05		deve	Vanadium exposures resulted in developmental and reproductive effects in rats.		
			ТА	BLE 7 –	ADDITIONA	L DETE	CTIO	NS			
Chemical or Constituen (and reporting units)		^t Sample Date			Rai	nge of ections			tion Level	Typical Sources of Contaminant	
Calcium (mg/L)		(2018)		31	:	n/a		n	/a	n/a	
Magnesium (mg/L)		(2018)		26	1	n/a		n	/a	n/a	
pH (units)		(2018)		6.9	:	n/a		n	/a	n/a	
Alkalinity (mg/L) (201		(2018)	210		:	n/a		n	/a	n/a	
Aggressiveness Index		(2018)		11.1	:	n/a		n	/a	n/a	
Langelier Index (20		(2018)) -0.7			ı/a			/a	n/a	

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. *OROVILLE MOBILE HOME PARK WATER SYSTEM* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Examples of Source Water Protection Tips for Consumers

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Organize a storm drain stenciling project with your local government or water supplier. Stencil a message next to the street drain reminding people "Dump No Waste Drains to River" or "Protect Your Water". Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body.