

## 2024 Consumer Confidence Report

Water System Name: **BERRY CREEK C. S. D.** system # **CA0400016** Report Date: **September 2025**

*We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2024 and may include earlier monitoring data.*

**Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Almond Grove Mobile Home Park a (530) 342-6056 para asistirlo en español.**

**Type of water source(s) in use:** According to SWRCB records, this Source is Groundwater.

**Name & general location of source(s):** WELL #1 (001), WELL #2 (002), WELL #3 and WELL #5 Zink Rd., Berry Creek

**Drinking Water Source Assessment information:** This assessment was done using the Default Groundwater System Method

A source water assessment was conducted for the 001 WELL and the 002 WELL of the BERRY CREEK COMMUNITY SER DIST water system in October, 2002. A Drinking Water Source Assessment is not on file for either WELL #3 or WELL #5 of the BERRY CREEK COMMUNITY SERVICE DISTRICT water system.

WELL #1 - is considered most vulnerable to the following activities not associated with any detected contaminants:

Wells - Water supply

WELL #2 - is considered most vulnerable to the following activities not associated with any detected contaminants:

Wells - Water supply and Recreational area - surface water source

WELL #3 - does not have a completed assessment on file.

WELL #5 - does not have a completed assessment on file.

### **Discussion of Vulnerability:**

Well 01 - The source is considered vulnerable to the listed activities located near the source. Water supply wells and a surface water source (pond) are ranked as the highest possible contaminating activities. Three other water supply wells are located on Berry Creek Community Service District's property within Zone A of Well #1. The pond at Camp Okizu is used for recreation during the summer months. This Department is not aware of any contaminants originating from these activities.

Well 02 - The source is considered vulnerable to the listed activities located near the source. Water supply wells and a surface water source (Lake/pond) are ranked as the highest possible contaminating activities. Three other water supply wells are located on Berry Creek Community Service District's property within Zone A of Well #2. The lake/pond at Camp Okizu is used for recreation during the summer months. This Department is not aware of any contaminants originating from these activities.

Assessment summaries are not available for some sources. This is because:

- The Assessment has not been completed. Contact the local DDW district office or the water system to find out when the Assessment is scheduled to be done.
- The Assessment was not submitted electronically. The site used to obtain Assessments only provides access to Assessment summaries submitted electronically.

### **Acquiring Information:**

A copy of the complete assessment may be viewed at:

Butte County Public Health Department, Division of Environmental Health

202 Mira Loma Dr.

Oroville, CA 95965

You may request a summary of the assessment be sent to you by contacting:

Butte County Environmental Health Program Manager

(530) 552-3880 (phone), 530-538-5339 (fax)

**Time and place of regularly scheduled board meetings for public participation:** Regularly-scheduled water board or city/county council meetings are held monthly. The State Water Resources Control Board may offer other opportunities.

**For more information, contact:** [Jeff Davis jeffreyd@live.com](mailto:jeffreyd@live.com)

**Phone:** (530) 613-4166

## TERMS USED IN THIS REPORT

**Level 1 Assessment:** A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

**Level 2 Assessment:** A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

**Maximum Contaminant Level (MCL):** The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

**Maximum Contaminant Level Goal (MCLG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

**Maximum Residual Disinfectant Level (MRDL):** The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

**Primary Drinking Water Standards (PDWS):** MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

**Public Health Goal (PHG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

**Regulatory Action Level (AL):** The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

**Secondary Drinking Water Standards (SDWS):** MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

**Treatment Technique (TT):** A required process intended to reduce the level of a contaminant in drinking water.

**Variances and Exemptions:** Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.

**ND:** not detectable at testing limit

**ppm:** parts per million or milligrams per liter (mg/L)

**ppb:** parts per billion or micrograms per liter (µg/L)

**ppt:** parts per trillion or nanograms per liter (ng/L)

**ppq:** parts per quadrillion or picogram per liter (pg/L)

**pCi/L:** picocuries per liter (a measure of radiation)

**Sources of Drinking Water and Contaminants that May Be Present in Source Water:** The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

### Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- *Organic chemical contaminants*, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants*, that can be naturally-occurring or be the result of oil and gas production and mining activities.

**Regulation of Drinking Water and Bottled Water Quality:** In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

**About Your Drinking Water Quality - Drinking Water Contaminants Detected:** Tables 1, 2, 3, 4, 5, 6, 8 and A list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL or TT is asterisked. Additional information regarding the violation is provided later in this report.

**TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA**

| Microbiological Contaminants | Highest Number of Detections | No. of months in violation | MCL | MCLG | Typical Source of Bacteria   |
|------------------------------|------------------------------|----------------------------|-----|------|------------------------------|
| <i>E. Coli</i>               | (In the year 2024)<br>0      | 0                          | (a) | 0    | Human and animal fecal waste |

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

**TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER**

| Lead and Copper | Sample Date           | No. of Samples Collected | 90 <sup>th</sup> Percentile Level Detected | No. Sites Exceeding AL | Range of Results | AL  | PHG | Typical Source of Contaminant                                                                                   |
|-----------------|-----------------------|--------------------------|--------------------------------------------|------------------------|------------------|-----|-----|-----------------------------------------------------------------------------------------------------------------|
| Lead (ppb)      | September 29-30, 2023 | 5                        | ND                                         | 0                      | n/a              | 15  | 0.2 | Corrosion of household plumbing systems; erosion of natural deposits                                            |
| Copper (ppm)    | September 29-30, 2023 | 5                        | 0.139                                      | 0                      | ND – 0.168       | 1.3 | 0.3 | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives |

**TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS**

| Chemical or Constituent (and reporting units) | Sample Date | Level Detected | Range of Detections | MCL  | PHG (MCLG) | Typical Source of Contaminant                                                                                        |
|-----------------------------------------------|-------------|----------------|---------------------|------|------------|----------------------------------------------------------------------------------------------------------------------|
| Sodium (ppm)                                  | (2018-2024) | 6.8            | 6.0 – 12            | None | None       | Salt present in the water and is generally naturally occurring                                                       |
| Hardness (ppm)                                | (2018-2024) | 11.2           | 7.0 – 23.2          | None | None       | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring |

**TABLE 4 – DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD**

| Chemical or Constituent (and reporting units) | Sample Date | Level Detected | Range of Detections                                            | MCL [MRDL]      | PHG (MCLG) [MRDLG] | Typical Source of Contaminant                                                                                                 |
|-----------------------------------------------|-------------|----------------|----------------------------------------------------------------|-----------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Lead (µg/L)                                   | (2018-2022) | 2 <sup>1</sup> | ND – Well #1<br>8.97 - Well #2<br>ND – Well #3<br>ND – Well #5 | Action Level 15 | 0.2                | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits |
| Nitrate (as N) mg/L                           | (2024)      | .5             | 0.4 Well #1<br>0.4 Well #2<br>0.5 Well #3<br>0.5 Well #5       | 10              | 10                 | Leaching from septic tanks, sewage; erosion of natural deposits; fertilizer use.                                              |

<sup>1</sup> **NOTE for TABLE 4 above:** Berry Creek Community Service District's water from all four wells is pumped simultaneously into the water supply tank. The mixing of all of the wells' water together in the tank dilutes the level of Lead from Well #2 before any water is sent into the distribution system to be delivered to homes. The average of 2 (µg/L) is less than the detection limit for reporting (DLR). This is why no lead was detected at home taps in TABLE 2.

**\* NOTE for TABLE 5 on next page:** In Well #5 the level of Iron and the level of Turbidity exceed their Secondary Maximum Contaminant Levels (SMCL). Berry Creek Community Service District's water from all four wells is pumped simultaneously into the water supply tank. The mixing of the water prior to delivery to consumers is a Treatment Technique used to reduce the level of certain Constituents delivered to below their SMCLs before any water is sent into the distribution system pipes to be delivered to homes.

**TABLE 5 – DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD**

| Chemical or Constituent (and reporting units)    | Sample Date | Level Detected | Range of Detections                                             | SMCL                                   | PHG (MCLG)                 | Typical Source of Contaminant                                                                                   |
|--------------------------------------------------|-------------|----------------|-----------------------------------------------------------------|----------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|
| Chloride (mg/L)                                  | (2018-2024) | 1.6            | 1 – 2.0                                                         | 500                                    | none                       | Runoff/leaching from natural deposits; seawater influence.                                                      |
| Copper, Free (mg/L)                              | (2018-2024) | 0.013          | 0.050 – Well #1<br>ND – Well #2<br>ND – Well #3<br>ND – Well #5 | 1.0                                    | none for aesthetic effects | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives |
| Iron ( $\mu\text{g/L}$ )                         | (2018-2024) | 93             | ND Well #1<br>ND Well #2<br>ND Well #3<br>* 370 Well #5         | 300                                    | none                       | Leaching from natural deposits; industrial wastes                                                               |
| Specific Conductance ( $\mu\text{S}/\text{cm}$ ) | (2018-2024) | 54.2           | 47 – 70                                                         | 1,600                                  | none                       | Substances that form ions when in water; seawater influence.                                                    |
| Sulfate (mg/L)                                   | (2018-2024) | 0.25           | 0.5 Well #1<br>ND Well #2<br>0.52 Well #3<br>ND Well #5         | 500                                    | none                       | Runoff/leaching from natural deposits; industrial wastes.                                                       |
| Total Dissolved Solids (TDS) mg/L                | (2018-2024) | 60             | 48 – 90                                                         | 1,000                                  | none                       | Runoff/leaching from natural deposits.                                                                          |
| Turbidity (Units)                                | (2018-2024) | 1.7            | 0.65 Well #1<br>ND Well #2<br>ND Well #3<br>* 6.2 Well #5       | 5 TT<br>* See TT Violation in Table 7. | none                       | Soil runoff.                                                                                                    |

**TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS**

| Chemical or Constituent (and reporting units) | Sample Date | Level Detected | Range of Detections | Notification Level | Health Effects Language |
|-----------------------------------------------|-------------|----------------|---------------------|--------------------|-------------------------|
| Testing for some unregulated contaminants.    | (2018-2024) | ND             | ND - ND             | --                 | --                      |

**TABLE 7 – VIOLATION OF A MCL, MRDL, AL, TT OR MONITORING REPORTING REQUIREMENT**

| Violation | Explanation                                                                                                                                                                         | Length                        | Steps Taken to Control the Violation                                                                                                                                                                               | Health Effects Language                                                                                                                                                                                                                                                                                                                                      |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TT        | Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of water quality. High turbidity can hinder the effectiveness of disinfectants. | Well #5 continuous since 2018 | High Turbidity is present in Well #5. The water from all four wells is always mixed together, which lowers turbidity. The Berry Creek Community Service District is not required to filter or disinfect its water. | Turbidity has no health effects. However, high levels of turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches. |

**TABLE 8 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLES**

| Microbiological Contaminants (complete if fecal-indicator detected) | Total No. of Detections | Sample Dates | MCL [MRDL] | PHG (MCLG) [MRDLG] | Typical Source of Contaminant |
|---------------------------------------------------------------------|-------------------------|--------------|------------|--------------------|-------------------------------|
| <i>E. coli</i>                                                      | (In the year 2024)<br>0 | n/a          | 0          | (0)                | Human and animal fecal waste  |

**TABLE A – ADDITIONAL DETECTIONS**

| Chemical or Constituent (and reporting units) | Sample Date | Level Detected                         | Range of Detections                                         | Notification Level | Typical Source of Contaminant |
|-----------------------------------------------|-------------|----------------------------------------|-------------------------------------------------------------|--------------------|-------------------------------|
| Calcium (mg/L)                                | (2018-2024) | 4                                      | 2 – 6                                                       | n/a                | n/a                           |
| Magnesium (mg/L)                              | (2018-2024) | 0.5                                    | ND Well #1<br>ND Well #2<br>ND Well #3<br>2 Well #5         | n/a                | n/a                           |
| pH (units)<br>Laboratory                      | (2015-2022) | 6.0                                    | 5.44 Well #1<br>5.57 Well #2<br>5.95 Well #3<br>6.9 Well #5 | n/a                | n/a                           |
| Alkalinity (Total) mg/L                       | (2018-2024) | 26                                     | 20 - 35                                                     | n/a                | n/a                           |
| Aggressiveness Index                          | (2018-2024) | 8.5                                    | 7.7 – 9.4                                                   | n/a                | n/a                           |
| Langelier Index                               | (2022-2024) | n/a as not available for Wells #2 & #3 | -3.4 Well #1<br>-2.4 Well #5                                | n/a                | n/a                           |

## Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained at [Safe Drinking Water Information | US EPA](https://www.epa.gov/ground-water-and-drinking-water/safe-drinking-water-information) <https://www.epa.gov/ground-water-and-drinking-water/safe-drinking-water-information>.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available at <https://www.cdc.gov/cryptosporidium/prevention/index.html> and <https://www.cdc.gov/drinking-water/prevention/preventing-waterborne-germs-at-home.html>.

**Lead-Specific Language:** If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. **BERRY CREEK COMMUNITY SERVICE DISTRICT** is responsible for providing high quality drinking water, and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact **BERRY CREEK COMMUNITY SERVICE DISTRICT**'s General Manager for further direction. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at [Basic Information about Lead in Drinking Water | US EPA](http://www.epa.gov/safewater/lead) <http://www.epa.gov/safewater/lead>.

### SOURCE WATER PROTECTION TIPS FOR CONSUMERS

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides – they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching to water sources.
- Dispose of chemicals properly (follow the directions on the package or visit <https://dtsc.ca.gov/household-hazardous-waste/> ). Take used motor oil to a recycling center. Clean up oil spills.
- Learn about Healthy Water Shed Protection <https://www.epa.gov/hwp>.

### **WATER CONSERVATION TIPS FOR CONSUMERS**

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference – try one today and soon it will become second nature.

- Take short showers – a 5 minutes shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair, and shaving and save up to 500 gallons a month.
- Water-efficient showerheads are inexpensive, easy to install, and can save you up to 750 gallons a month.
- Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- Fix leaking toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month.
- Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.
- Water plants only when necessary.
- Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill!
- Visit <https://www.epa.gov/watersense> for more information.