Water System Information

Water System Name: YWAM Chico PWS #04-00001

Report Date: [Enter Report Date]

Type of Water Source(s) in Use: Well/Aquifer

Name and General Location of Source(s): Well 1&2 Youth with a Mission, Springs of living Water

Drinking Water Source Assessment Information: None

Time and Place of Regularly Scheduled Board Meetings for Public Participation: None

For More Information, Contact: David L. Grigg (530) 893-6750 Ext 403

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2021 and may include earlier monitoring data.

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse [Enter Water System's Name] a [Enter Water System's Address or Phone Number] para asistirlo en español.

Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 [Enter Water System Name]以获得中文的帮助: [Enter Water System's Address][Enter Water System's Phone Number].

Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa [Enter Water System's Name and Address] o tumawag sa [Enter Water System's Phone Number] para matulungan sa wikang Tagalog.

Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ [Enter Water System's Name] tại [Enter Water System's Address or Phone Number] để được hỗ trợ giúp bằng tiếng Việt.

Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau [Enter Water System's Name] ntawm [Enter Water System's Address or Phone Number] rau kev pab hauv lus Askiv.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ррд	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Complete if bacteria are detected.

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	(In the year) None	0	(a)	0	Human and animal fecal waste

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 1.A. Compliance with Total Coliform MCL between January 1, 2021 and June 30, 2021 (inclusive)

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria	(In a month) None	0	1 positive monthly sample (a)	0	Naturally present in the environment
Fecal Coliform and <i>E. coli</i>	(in the year) None	0	0	None	Human and animal fecal waste

(a) For systems collecting fewer than 40 samples per month: two or more positively monthly samples is a violation of the total coliform MCL

For violation of the total coliform MCL, include potential adverse health effects, and actions taken by water system to address the violation: [Enter information]

Table 2. Sampling Results Showing the Detection of Lead and Copper

Complete if lead or copper is detected in the last sample set.

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	рнс	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead (ppb)	June 10, 2021	5	0	0	15	0.2	0	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	June 10, 2021	5	0	0	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Table 3. Sampling Results for Sodium and Hardness

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm) (Next Due 2026) (well #1)	May 2, 2017	22	41	None	None	Salt present in the water and is generally naturally occurring
Sodium (ppm) (Next Due 2026) (well #2)	May 2, 2017	60	41	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm) (Next Due 2026) (well #1)	May 2, 2017	212	222	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
Hardness (ppm) (Next Due 2026) (well #2)	May 2, 2017	232	222	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

PH (well#1) (well #2)	May 2, 2017	7.5	7.5	None	None				
		7.4							
Radioactive Contaminants (next due 2027)									
Chemical or Constituent (and reporting units)Sample DateLevel 									
Well#1 Gross Alpha (pCi/l) Gross Alpha Counting Error (pCi/l) Gross Alpha MDA95 (pCi/L)	25 May 2018 (next due 2027)	0.435 ± 1.26 1.80	.493 ± 1.94 1.82	15	none	Erosion of natural deposits			
Well#2 Gross Alpha (pCi/l) Gross Alpha Counting Error (pCi/l) Gross Alpha MDA95 (pCi/L)	25 May 2018 (next due 2027)	0.550 ± 1.31 1.84	.493 ± 1.94 1.82	15	none	Erosion of natural deposits			
Well#1 Radium 228 (pCi/L) Radium Counting Error (pCi/L) Radium 228 MDA95	25 May 2018 (next due 2027)	0.032 ± 0.638 0.383	.016 ± 0.450 .384	1	(0) ³	Erosion of natural deposits			
Well#2 Radium 228 (pCi/L) Radium Counting Error (pCi/L) Radium 228 MDA95	25 May 2018 (next due 2027)	0.000 ± 0.540 0.384	.016 ± 0.450 .384	1	(0) ³	Erosion of natural deposits			

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Nitrate as N (Nitrogen) (well #1) (ug/L) (well #2) (Next due Once a year)	May 12, 2021	ND	.4	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
		GENERAL N	IINERAL & PHY	SICAL		
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Total Hardness (as CaCO3) mg/L 232 1 Well #1 Well #2	May 2, 2017 (next due 2026)	212 232		none	none	

Magnesium (Mg) mg/L20 1	May 2, 2	017						
Well #1	(next due 2		17					
Well #2	(20					
Sodium (Na) mg/L								
Well #1	May 2, 2		22					
Well #2	(next due 2		28					
Potassium (K) mg/L	May 2, 2		2					
Well #1 Well #2	(next due 2	2026)	2 2					
Total Cations meg/L			2					
Well #1	May 2, 2	017	5.9					
Well #2	(next due 2		5.9					
Total Alkalinity (as CaCO3)		/						
mg/L	May 2, 2	017	150					
Well #1	(next due 2	2026)	160					
Well #2								
Hydroxide (OH) mg/L	May 2, 2							
Well #1	(next due 2	2026)	ND					
Well #2	Mars 2, 2	017	ND					
Carbonate (CO3) mg/L Well #1	May 2, 2 (next due 2		ND					
Well #2	(next due 2	2020)	ND ND					
Bicarbonate (HCO3) mg/L								
Well #1	May 2, 2	017	180					
Well #2	(next due 2		200					
Sulfate (SO4) mg/L						* 2		Runoff/leaching from
Well #1	May 2, 2		87.7		25	60-500-600		natural deposits;
Well #2	(next due 2	2026)	89.7					industrial wastes
Chloride (Cl) mg/L								
Well #1	May 2, 2	017	7			20		
Well #2	(next due 2	2026)	20					
Nitrate (NO3) mg/L								
Well #1	May 2, 2		ND			45		
Well #2	(next due 2							
Fluoride (F) mg/L Well #1	May 2, 2 (next due 2		7					Runoff/leaching from
Well #2	(next due 2	2020)	7 20			* 2		natural deposits;
Wen #2			20		25	60-500-600		seawater influence
Total Anions meg/L	May 2, 2	017						
Well #1	(next due 2	2026)	5.0					
Well #2			5.7					
pH (Std units)	May 2, 2							
Well #1	(next due 2	2026)	7.5					
Well #2	May 2, 2	017	7.4			** 2		
Specific Conductance (E.C.) Well #1	(next due 2		503					Substances that form
Well #2	(liext due 2	2020)	503			00-1600- 2200		ions when in water; seawater influence
			571					seawater innuence
					u	mhos/cm2		
Total Filterable Residue						*** 2		
mg/L	May 2, 2	017	390			-		
Well#1	(next due 2		390 410			500-1000- 1500		
Well #2	(next due 2		10			1300		
MBAS mg/L 38260 ND						0.5 ²		
0.05	May 2, 2					0.0		
Well#1	(next due 2		ND					
Well #2								
		AD	DITIONA	L INORGANI	CS CHEM	ICALS		
·				_		PHG		
Chemical or Constituent	Sample		Level	Range of	MCL	(MCLG)	Typical S	ource of Contaminant
(and reporting units)	Date	De	tected	Detections	[MRDL]	[MRDLG]		
	1				1		1	

Vanadium (ug/L)					
Well#1	May 2, 2017	ND			
Well #2	(next due 2026)				
(Due next 2026)					
Boron ug/L Well #1	May 2, 2017	200			
Well #2	(next due 2026)	300			
(Due next 2026)	()				
Langelier Index at 20 °C		-0.02			
Well #1	May 2, 2017	-0.08			
Well #2	(next due 2026)				
(Due next 2026) Nitrate as N (Nitrogen) mg/L					
Well #1	May 2, 2017				Runoff and leaching from fertilizer use;
Well #2	(next due 2026)	ND	10		leaching from septic
(Due next 2026)	(tanks and sewage;
					erosion of natural
					deposits
Nitrate + Nitrite as N mg/L					Runoff and leaching
Well #1	May 2, 2017		1		from fertilizer use;
Well #2	(next due 2026)	ND	1		leaching from septic
(Due next 2026)					tanks and sewage;
					erosion of natural
	M 0 0017				deposits
Sodium Adsorption Ratio (SAR) mg/L	May 2, 2017 (next due 2026)	0.7			
(SAR) IIg/L Well #1	(flext due 2020)	0.8			
Well #2		0.0			
Aggressiveness Index 82383	May 2, 2017				
11.8	(next due 2026)	11.8			
Well #1		11.8			
Well #2 (Due next 2026)					
Perchlorate ug/L	May 2, 2017				
Well #1	(next due 2026)	ND	-		
Well #2			6		
(Due next 2026)					
Fluoride (F)	May 2, 2017	0.2000		1	Erosion of natural
(well #1&2)	May 2, 2017 (next due 2026)	0.2ppm	2.0		deposits; water
(weil #1022)	(liext due 2020)				additive which promotes strong teeth;
(Due next 2026)					discharge from
					fertilizer and
					aluminum factories
Aluminum	May 14, 2019	ND	1	0.6	Erosion of natural
	(Due next 2028)				deposits; residue from
					some surface water
					treatment processes
Arsenic (well #1&2)	May 14, 2019	ND	10	0.004	Erosion of natural
	(Due next 2028)				deposits; runoff from
					orchards; glass and
					electronics production
A	Mar. 14, 2010	ND			wastes
Antimony	May 14, 2019 (Due next 2028)	ND	6	1	Discharge from
	(Euc next 2020)				petroleum refineries; fire retardants;
					ceramics; electronics;
					solder
Boron	May 14, 2019	.3ppm	1ppm		
	(Due next 2028)		1PPm		

	1		1	1	1	1
Barium	May 14, 2019 (Due next 2028)	ND		1	2	Discharge of oil drilling wastes and from metal refineries; erosion of natural deposits
Beryllium	May 14, 2019 (Due next 2028)	ND		4	1	Discharge from metal refineries, coal- burning factories, and electrical, aerospace, and defense industries
Cadmium	May 14, 2019 (Due next 2028)	ND		5	0.04	Internal corrosion of galvanized pipes; erosion of natural deposits; discharge from electroplating and industrial chemical factories, and metal refineries; runoff from waste batteries and paints
Glyphosate (exampleRound-up)	May 6, 2020 (Next due 2023)	ND		700	900	Runoff from herbicide use
Mercury (inorganic) (well 1&2)	May 14, 2019 (Due next 2028)	ND		2	1.2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and cropland
Nickel (well 1 & 2)	May 14, 2019 (Due next 2028)	ND		100	12	Erosion of natural deposits; discharge from metal factories
Perchlorate (well #1&2)	May 6, 2020 (next due 2023)	ND		6	1	Perchlorate is an inorganic chemical used in solid rocket propellant, fireworks, explosives, flares, matches, and a variety of industries. It usually gets into drinking water as a result of environmental contamination from historic aerospace or other industrial operations that used or use, store, or dispose of perchlorate and its salts.
Selenium (well#1&2)	May 14, 2019 (Due next 2028)	ND		50	30	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive)

Thallium (well#1&2)	May 14, 2019	ND		2	0.1	Leaching from ore-
,	(Due next 2028)			2	0.1	processing sites; discharge from
						electronics, glass, and drug factories
Total Trihalomethanes ug/L	Aug 21, 2020	ND		80		Byproduct of drinking water
	(next Due 2023)					disinfection
			ORGANICS CH	EMICALS		
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Arsenic ug/L Well #1	May 6, 2020	ND		10		Erosion of natural
Well #2	(next due 2022)	ND		10		deposits; runoff from orchards; glass and electronics production wastes
Copper ug/L Well #1	May 2, 2017	ND		1000 2		Internal corrosion of
Well #2	(Due next 2028)					household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Zinc ug/L	May 2, 2017					Runoff/leaching from
Well #1 Well #2	(Due next 2028)	ND				natural deposits; industrial wastes
			DRGANICS CHE	EMICALS		
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Bromodichloromethane (ug/L)	Aug 12, 2020					
(well 1) (well 2)	(next due 2025)	ND ND				
Bromoform (well 1)	Aug 12, 2020 (next due 2025)	ND				
(well 2)	(next due 2025)	ND				
Chloroform (Trichloromethane) (well 1)	Aug 12, 2020 (next due 2025)	ND				
(well 2)		ND				
Dibromochloromethane (well 1) (well 2)	Aug 12, 2020 (next due 2025)	ND ND				
Total Trihalomthanes (THM'STTHM) (well 1)	Aug 12, 2020 (next due 2025)	ND				
(well 1) (well 2)		ND		80		
Benzene (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND		1	0.15	Discharge from plastics, dyes and nylon factories; leaching from gas storage tanks and landfills
Carbon tetrachloride (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND		0.5 (500)	100	Discharge from chemical plants and other industrial activities

1,2-Dichlorobenzene (o- DCB) (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	600	600	Discharge from industrial chemical factories
1,4-Dichlorobenzene (p- DCB) (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	5	6	Discharge from industrial chemical factories
1,1-Dichloroethane (1,1- DCA) (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	5	3	Extraction and degreasing solvent; used in the manufacture of pharmaceuticals, stone, clay, and glass products; fumigant
1,2-Dichloroethane (1,2- DCA) (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	0.5 (500)	400	Discharge from industrial chemical factories
1,1-Dichloroethylene (1,1- DCE) (ug/L) (well 1&2)	May 14, 2019 (next due 2025)	ND	6	10	Discharge from industrial chemical factories
cis-1,2-Dichloroethylene (ug/L) (well 1&2)	May 14, 2019 (next due 2025)	ND	6	100	Discharge from industrial chemical factories; major biodegradation byproduct of TCE and PCE groundwater contamination
trans-1,2-Dichloroethylene (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	10	60	Discharge from industrial chemical factories; major biodegradation byproduct of TCE and PCE groundwater contamination
Dichloromethane (Methylene Chloride) (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	5	4	Discharge from pharmaceutical and chemical factories; insecticide
1,2-Dichloropropane (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	5	0.5	Discharge from industrial chemical factories; primary component of some fumigants
Total 1,3-Dichloropropene (ug/L) (well 1&2)	May 22, 2019 (next due 2025)	ND	0.5 (500)	200	Runoff/leaching from nematocide used on croplands
Ethyl Benzene (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	300	300	Discharge from petroleum refineries; industrial chemical factories
Monochlorobenzene (ug/L) (well 1&2)	May 14, 2019 (next due 2025)	ND	70	70.	Discharge from industrial and agricultural chemical factories and drycleaning facilities
Styrene (well 1&2)	May 14, 2019 (next due 2025)	ND	100	0.5	Discharge from rubber and plastic factories; leaching from landfills

1,1,2,2-Tetrachloroethane (well 1&2)	May 14, 2019 (next due 2025)	ND	1	0.5	Discharge from industrial and agricultural chemical factories; solvent used in production of TCE, pesticides, varnish and lacquers
Tetrachloroethylene (PCE) (well 1&2)	May 14, 2019 (next due 2025)	ND	5	0.5	Discharge from factories, dry cleaners, and auto shops (metal degreaser)
Toluene (well 1&2)	May 14, 2019 (next due 2025)	ND	150	0.5	Discharge from petroleum and chemical factories; underground gas tank leaks
1,2,4-Trichlorobenzene (well 1&2)	May 14, 2019 (next due 2025)	ND	5	0.5	Discharge from textile-finishing factories
1,1,1-Trichloroethane (1,1,1-TCA) (well 1&2)	May 14, 2019 (next due 2025)	ND	200	0.5	Discharge from metal degreasing sites and other factories; manufacture of food wrappings
1,1,2-Trichloroethane (1,1,1-TCA) (well 1&2)	May 14, 2019 (next due 2025)	ND	5	0.5	Discharge from industrial chemical factories
Trichloroethylene (TCE) (well 1&2)	May 14, 2019 (next due 2025)	ND	5	0.5	Discharge from metal degreasing sites and other factories
Trichlorofluoromethane (Freon 11) (well 1&2)	May 14, 2019 (next due 2025)	ND	150	5	
Trichlorotrifluoroethane (Freon 113) (well 1&2)	May 14, 2019 (next due 2025)	ND	1200	10	
Vinyl chloride (well 1&2)	May 14, 2019 (next due 2025)	ND	0.5	0.5	Leaching from PVC piping; discharge from plastics factories; biodegradation byproduct of TCE and PCE groundwater contamination
m,p-Xylenes (well 1&2)	May 14, 2019 (next due 2025)	ND	1750	0.5	Discharge from petroleum and chemical factories; fuel solvent
o-Xylene (well 1&2)	May 14, 2019 (next due 2025)	ND	1750	0.5	Discharge from petroleum and chemical factories; fuel solvent
Total Xylenes (m,p & o) (well 1&2)	May 14, 2019 (next due 2025)	ND	1750	0.5	Discharge from petroleum and chemical factories; fuel solvent

Methyl tert-Butyl Ether (MTBE) (well 1&2)	May 14, 2019 (next due 2025)	ND		13	3.0	Leaking underground storage
						tanks; discharges from petroleum and chemical factories
cis-1,3-Dichloropropene (well 1&2)	May 14, 2019 (next due 2025)	ND		0.5	0.5	Discharge from industrial chemical factories; minor biodegradation byproduct of TCE and PCE groundwater contamination
trans-1,3-Dichloropropene (well 1&2)	May 14, 2019 (next due 2025)	ND		0.5	0.5	Discharge from industrial chemical factories; minor biodegradation byproduct of TCE and PCE groundwater contamination
			ORGANICS CH	EMICALS	1	1
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Bromobenzene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
Bromochloromethane (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	one of the total trihalomethanes (TTHMs), is formed when chlorine or other disinfectants are used to treat surface water.
Bromomethane (Methyl Bromide) (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
n-Butylbenzene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
sec-Butylbenzene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
tert-Butylbenzene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
Chloroethane (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	found in common household products such as paints, solvents, air fresheners, and deodorant spray
Chloromethane (Methyl Chloride) (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	found in common household products such as paints, solvents, air fresheners, and deodorant spray
2-Chlorotoluene A-008 (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
4-Chlorotoluene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
Dibromomethane (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	

Diisopropyl Ether (DIPE) (well 1&2)	May 14, 2019	ND			3	
Tert-amyl-methyl Ether (TAME) (well 1&2)	May 14, 2019	ND			3	
Ethyl tert-Butyl Ether (ETBE) (well 1&2)	May 14, 2019	ND			3	
(and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Chemical or Constituent		DDITIONAL Level	ORGANICS CH		DUC	Thurstool 0
(well 1&2)	(next due 2025)	ND			0.5	textile-finishing factories
(well 1&2) 1,3,5-Trimethylbenzene	(next due 2025) May 14, 2019	ND			0.5	Discharge from textile-finishing factories Discharge from
1,2,3-Trichlorobenzene (well 1&2) 1,2,4-Trimethylbenzene	May 14, 2019 (next due 2025) May 14, 2019	ND			0.5	Discharge from textile-finishing factories
1,1,1,2-Tetrachloroethane (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	Discharge from metal degreasing sites and other factories; manufacture of food wrappings
n-Propylbenzene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
Naphthalene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
p-Isopropyltoluene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
Isopropylbenzene (Cumene) (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
Hexachlorobutadiene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	cropiands
1,1-Dichloropropene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	Runoff/leaching from nematocide used on croplands
2,2-Dichloropropane (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	Runoff/leaching from nematocide used on croplands
1,3-Dichloropropane (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	Runoff/leaching from nematocide used on croplands
Dichlorodifluoromethane (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
DCB) (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Iron (Untreated) (well #1) (ug/L) (well #2)	May 12,2021	970 870	1400	300²ug/L	none	Leaching from natural deposits; industrial wastes
Manganese (Untreated) (well #1) (ug/L) (well #2)	May 12, 2021	240 220	391	50²ug/L	none	Leaching from natural deposits
Iron (treated) (well #1 & 2) (ug/L)	May 6, 2020	50		300²ug/L		Leaching from natural deposits; industrial wastes
Iron (treated) (well #1 & 2) (ug/L)	May 12, 2021	ND		300²ug/L		Leaching from natural deposits; industrial wastes
Iron (treated) (well #1 & 2) (ug/L)	May 12, 2022	ND		300²ug/L		Leaching from natural deposit
Manganese (treated) (well #1 & 2) (ug/L)	May 6, 2020	120		300²ug/L		Leaching from natural deposits
Manganese (treated) (well #1 & 2) (ug/L)	May 12, 2021	20		300²ug/L		Leaching from natural deposit
Manganese (treated) (well #1 & 2) (ug/L)	May 12, 2022	ND		300²ug/L		Leaching from natural deposit
Chloride (well#1) (well#2) (Due next 2026)	May 2, 2017	7ppm 20ppm	13.5	500ppm		Runoff/leaching from natural deposits; seawater influence
Sulfate (SO4) (well#1) (well#2) (Due next 2026)	May 2, 2017	87.7ppm 89.7ppm	88.7	500ppm		Runoff/leaching from natural deposits; industrial wastes
Specific Conductance (E.C.) µS/cm (well#1) (Due next 2026)	May 2, 2017	503		1600		Substances that form ions when in water; seawater influence
Specific Conductance (E.C.) µS/cm (well#2) (Due next 2026)	May 2, 2017	410		1600		Substances that form ions when in water; seawater influence
Foaming Agents (MBAS) (well#1&2) (Due next 2026)	May 2, 2017	ND		500ppb		Municipal and industrial waste discharges
Copper (well#1&2) (Due next 2026)	May 2, 2017	ND		1.0ppm		Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Haloacetic (five) (HAA5) (Due next 2023)	Aug 12, 2020	10		60		Byproduct of drinking water disinfection
Silver (Due next 2028)	May 14, 2019	ND		100		Industrial discharges
1,2,3-Trichloropropane Well #1 (ug/L) Well #2 (Due next 2021)	Nov 06,2018	ND	ND	0.005		Discharge from industrial and agricultural chemical factories; leaching from hazardous waste sites; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct

					during the production of other compounds and pesticides.
1,2,3-Trichloropropane Well #1 (ug/L) Well #2 (Due next 2024)	Nov 31, 2021	ND	ND	0.005	Discharge from industrial and agricultural chemical factories; leaching from hazardous waste sites; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides.
Zinc (well#1&2) (Due next 2026)	May 2, 2017	ND		5.0	Runoff/leaching from natural deposits; industrial wastes

Table 6. Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
None					

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [Enter Water System's Name] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

SWS CCR

Additional Special Language for Nitrate, Arsenic, Lead, Radon, and *Cryptosporidium*: [Enter Additional Information Described in Instructions for SWS CCR Document]

State Revised Total Coliform Rule (RTCR): [Enter Additional Information Described in Instructions for SWS CCR Document]

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
None				

For Water Systems Providing Groundwater as a Source of Drinking Water

 Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples

Microbiological Contaminants (complete if fecal- indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	(In the year) 0	[Enter Dates]	0	(0)	Human and animal fecal waste
Enterococci	(In the year) 0	[Enter Dates]	TT	N/A	Human and animal fecal waste
Coliphage	(In the year) 0	[Enter Dates]	TT	N/A	Human and animal fecal waste

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Violation of a Groundwater TT

Special Notice of Fecal Indicator-Positive Groundwater Source Sample: [Enter Special Notice of Fecal Indicator-Positive Groundwater Source Sample]

Special Notice for Uncorrected Significant Deficiencies: [Enter Special Notice for Uncorrected Significant Deficiencies]

Table 9. Violation of Groundwater TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
None				

For Systems Providing Surface Water as a Source of Drinking Water

Table 10. Sampling Results Showing Treatment of Surface Water Sources

Treatment Technique ^(a) (Type of approved filtration technology used)	[Enter Treatment Technique]
Turbidity Performance Standards ^(b)	Turbidity of the filtered water must:
(that must be met through the water treatment process)	1 – Be less than or equal to [Enter Turbidity Performance Standard to Be Less Than or Equal to 95% of Measurements in a Month] NTU in 95% of measurements in a month.
	2 – Not exceed [Enter Turbidity Performance Standard Not to Be Exceeded for More Than Eight Consecutive Hours] NTU for more than eight consecutive hours.
	3 – Not exceed [Enter Turbidity Performance Standard Not to Be Exceeded at Any Time] NTU at any time.
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	N/A
Highest single turbidity measurement during the year	N/A
Number of violations of any surface water treatment requirements	N/A

(a) A required process intended to reduce the level of a contaminant in drinking water.

(b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

Summary Information for Violation of a Surface Water TT

Table 11. Violation of Surface Water TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
N/A				

Summary Information for Operating Under a Variance or Exemption

N/A

Summary Information for Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements

If a water system is required to comply with a Level 1 or Level 2 assessment requirement that is not due to an *E. coli* MCL violation, include the following information below [22 CCR section 64481(n)(1)].

Level 1 or Level 2 Assessment Requirement not Due to an *E. coli* MCL Violation

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

Level 2 Assessment Requirement Due to an *E. coli* MCL Violation

E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely compromised immune systems. We found *E. coli* bacteria, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) identify problems and to correct any problems that were found during these assessments.

We were required to complete a Level 2 assessment because we found *E. coli* in our water system. In addition, we were required to take [Insert Number of Corrective Actions] corrective actions and we completed [Insert Number of Corrective Actions] of these actions.