2020 Consumer Confidence Report

Water System Information

Water System Name: YWAM Chico PWS #04-00001

Report Date: June 16, 2021

Type of Water Source(s) in Use: Well/Aquifer

Name and General Location of Source(s): Well 1&2 Youth with a Mission, Springs of living Water

Drinking Water Source Assessment Information: None

Time and Place of Regularly Scheduled Board Meetings for Public Participation: None

For More Information, Contact: David L. Grigg (530) 893-6750 Ext 101

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2020 and may include earlier monitoring data.

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse [Enter Water System's Name] a [Enter Water System's Address or Phone Number] para asistirlo en español.

Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 [Enter Water System Name]以获得中文的帮助: [Enter Water System's Address][Enter Water System's Phone Number].

Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa [Enter Water System's Name and Address] o tumawag sa [Enter Water System's Phone Number] para matulungan sa wikang Tagalog.

Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ [Enter Water System's Name] tại [Enter Water System's Address or Phone Number] để được hỗ trợ giúp bằng tiếng Việt.

Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau [Enter Water System's Name] ntawm [Enter Water System's Address or Phone Number] rau kev pab hauv lus Askiv.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per million or milligrams per liter (mg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ррд	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Complete if bacteria are detected.

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria (State Total Coliform Rule)	(In a month) None	0	1 positive monthly sample ^(a)	0	Naturally present in the environment
Fecal Coliform or <i>E. coli</i> (State Total Coliform Rule)	(In the year) None	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive	None	Human and animal fecal waste
<i>E. coli</i> (Federal Revised Total Coliform Rule)	(In the year) None	0	(b)	0	Human and animal fecal waste

(a) Two or more positive monthly samples is a violation of the MCL

(b) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 2. Sampling Results Showing the Detection of Lead and Copper

Complete if lead or copper is detected in the last sample set.

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	рнс	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead (ppb)	June 26. 2018 (next due 2021)	5	0	0	15	0.2	0	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	June 26. 2018 (next due 2021)	5	0	0	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm) (Next Due 2026)	May 2, 2017	22	41	None	None	Salt present in the water and is generally naturally occurring
Sodium (ppm) (Next Due 2026)	May 2, 2017	60	41	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm) (Next Due 2026)	May 2, 2017		222	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
Hardness (ppm) (Next Due 2026)	May 2, 2017	[Enter No.]	222	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
PH (well #1)	May 2,	7.5	7.5	None	None	
(well#1)	2017	7.4				
(Next Due 2026)						
	Radi	oactive Cor	ntaminants (n	ext due	2027)	
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Well#1 Gross Alpha (pCi/l) Gross Alpha Counting Error (pCi/l) Gross Alpha MDA95 (pCi/L)	25 May 2018 (next due 2027)	0.435 ± 1.26 1.80	.493 ± 1.94 1.82	15	none	Erosion of natural deposits
Well#2 Gross Alpha (pCi/l) Gross Alpha Counting Error (pCi/l) Gross Alpha MDA95 (pCi/L)	25 May 2018 (next due 2027)	0.550 ± 1.31 1.84	.493 ± 1.94 1.82	15	none	Erosion of natural deposits
Well#1 Radium 228 (pCi/L) Radium Counting Error (pCi/L) Radium 228 MDA95	25 May 2018 (next due	0.032 ± 0.638	.016 ± 0.450	1	(0) ³	Erosion of natural deposits
	2027)	0.383	.384			

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Nitrate as N (Nitrogen) (well #1) (ug/L) (well #2)	May 6, 2020	ND ND	.4	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; arcsion of natural
(Next due Once a year)						deposits
		GENERAL N	IINERAL & PHY	SICAL		
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Total Hardness (as CaCO3) mg/L 232 1	May 2, 2017 (next due 2026)			None	None	
Well #1 Well #2		212 232				
Calcium (Ca) mg/L Well #1 Well #2	May 2, 2017 (next due 2026)	57 60		None	None	
Magnesium (Mg) mg/L20 1 Well #1 Well #2	May 2, 2017 (next due 2026)	17 20				
Sodium (Na) mg/L	May 2, 2017 (next due 2026)					
Well #1 Well #2		22 28				
Potassium (K) mg/L Well #1 Well #2	May 2, 2017 (next due 2026)	2 2				
Total Cations meg/L Well #1 Well #2	May 2, 2017 (next due 2026)	5.9 5.9				
Total Alkalinity (as CaCO3) mg/L Well #1 Well #2	May 2, 2017 (next due 2026)	150 160				
Hydroxide (OH) mg/L Well #1 Well #2	May 2, 2017 (next due 2026)	ND				
Carbonate (CO3) mg/L Well #1 Well #2	May 2, 2017 (next due 2026)	ND				
Bicarbonate (HCO3) mg/L Well #1 Well #2	May 2, 2017 (next due 2026)	180 200				
Sulfate (SO4) mg/L Well #1 Well #2	May 2, 2017 (next due 2026)	87.7 89.7		* 2 250-500-600		Runoff/leaching from natural deposits; industrial wastes
Chloride (Cl) mg/L Well #1 Well #2	May 2, 2017 (next due 2026)	7 20		20		Runoff/leaching from natural deposits; seawater influence
Nitrate (NO3) mg/L Well #1 Well #2	May 2, 2017 (next due 2026)	ND		45		
Fluoride (F) mg/L Well #1 Well #2	May 2, 2017 (next due 2026)	0.2 0.2		* 2 250-500-600		

Total Anions meg/L	May 2, 2017					
Well #1	(next due 2026)	5.0				
Well #2	(next due 2020)	5.0				
pH (Std units)	May 2, 2017	5.7				
	101ay 2, 2017	75				
Well #1	(next due 2020)	7.5				
Well #2	N 2 2017	7.4		** 0		
Specific Conductance	May 2, 2017			** 2		Substances that form
(E.C.) Well#1		503		900-1600-		ions when in water;
Well #2		571		2200		seawater influence
				umhos/cm2		
Total Filterable Pasidue				*** 0		
ma/I	Mar. 2, 2017			500 1000		
111g/L W/-11#1	101ay 2, 2017	200		1500		
Well#1	(next due 2026)	390		1500		
Well #2		410				
MBAS mg/L 38260 ND	May 2, 2017					
0.05 Well #1 & 2	(next due 2026)	ND		0.5 ²		
	AD	DITIONAL I	NORGANICS CI	HEMICALS		
Chemical or Constituent	Sample Date	Level	Range of	MCL	PHG	Typical Source of
(and reporting units)	_	Detected	Detections	[MRDL]	(MCLG)	Contaminant
				[]	[MRDLG]	
	N 2 2017					
Vanadium (ug/L)	May 2, 2017					
Well #1	(next due 2026)	ND				
Well #2						
Boron ug/L						
Well #1	May 2, 2017	200				
Well #2	(next due 2026)	300				
Langelier Index at 20 °C	May 2, 2017					
Well #1	(next due 2026)	-0.02				
Well #2	(110111 000 2020)	-0.08				
Nitrate as N (Nitrogen)	May 2 2017	0.00				Runoff and leaching
mg/I	(next due 2026)	ND		10		from fartilizar usa:
Wall #1	(liext due 2020)	ND		10		loophing from contin
Well #1						teaching from septic
Wen #2						tanks and sewage,
						erosion of natural
						deposits
Nitrate + Nitrite as N	May 2, 2017					Runoff and leaching
mg/L	(next due 2026)			10		from fertilizer use;
Well #1		ND				leaching from septic
Well #2						tanks and sewage;
						erosion of natural
						deposits
Nitrite as N (Nitrogen)	May 2, 2017					Runoff and leaching
mg/L	(next due 2026)			1		from fertilizer use;
Well #1		ND				leaching from septic
Well #2						tanks and sewage;
						erosion of natural
						deposits
Sodium Adsorption Ratio	May 2, 2017					
(SAR) mg/L Well #1	(next due 2026)	0.7				
Well #2	(0.8				
Aggressiveness Index	May 2 2017	0.0				
82383 11.8 Well #1	(next due 2026)	11.8				
02305 11.0 Well #1	(liext due 2020)	11.0				
Demeklemeter and /I	Mar. 2, 2017	11.0				-
Perchlorate ug/L	May 2, 2017	ND				
Well #1 &2	(next due 2026)	ND				
				6		
Fluoride (F) (well #1&2)	May 2, 2017	0.2ppm		2.0	1	Erosion of natural
	(next due 2026)					deposits; water additive
						which promotes strong
						teeth; discharge from
						fertilizer and aluminum
						factories

Aluminum	May 14, 2019 (Due next 2028)	ND	1	0.6	Erosion of natural deposits; residue from some surface water treatment processes
Arsenic (well #1&2)	May 14, 2019 (Due next 2028)	ND	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Antimony	May 14, 2019 (Due next 2028)	ND	6	1	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Boron	May 14, 2019 (Due next 2028)	.3ppm	1ppm		
Barium	May 14, 2019 (Due next 2028)	ND	1	2	Discharge of oil drilling wastes and from metal refineries; erosion of natural deposits
Beryllium	May 14, 2019 (Due next 2028)	ND	4	1	Discharge from metal refineries, coal-burning factories, and electrical, aerospace, and defense industries
Cadmium	May 14, 2019 (Due next 2028)	ND	5	0.04	Internal corrosion of galvanized pipes; erosion of natural deposits; discharge from electroplating and industrial chemical factories, and metal refineries; runoff from waste batteries and paints
Glyphosate (exampleRound-up)	May 6, 2020 (Next due 2023)	ND	700	900	Runoff from herbicide use
Mercury (inorganic) (well 1&2)	May 14, 2019 (Due next 2028)	ND	2	1.2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and cropland
Nickel (well 1 & 2)	May 14, 2019 (Due next 2028)	ND	100	12	Erosion of natural deposits; discharge from metal factories
Perchlorate (well #1&2)	May 6, 2020 (next due 2023)	ND	6	1	Perchlorate is an inorganic chemical used in solid rocket propellant, fireworks, explosives, flares, matches, and a variety of industries. It usually gets into drinking water as a result of environmental contamination from historic aerospace or other industrial operations that used or use, store, or dispose of perchlorate and its salts.
Selenium (well#1&2)	May 14, 2019 (Due next 2028)	ND	50	30	Discharge from petroleum, glass, and

						metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive)
Thallium (well#1&2)	May 14, 2019 (Due next 2028)	ND		2	0.1	Leaching from ore- processing sites; discharge from electronics, glass, and drug factories
Total Trihalomethanes ug/L	Aug 21, 2020 (next Due 2023)	ND		80		Byproduct of drinking water disinfection
_	RI	EGULATED IN	NORGANICS CH	EMICALS	ſ	
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Arsenic ug/L Well #1 Well #2	May 6, 2020 (next due 2022)	ND		10		Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Copper ug/L Well #1 Well #2	May 2, 2017 (Due next 2028)	ND		1000 2		Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Zinc ug/L Well #1 Well #2	May 2, 2017 (Due next 2028)	ND				Runoff/leaching from natural deposits; industrial wastes
	R	EGULATED	ORGANICS CHE	MICALS		
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Bromodichloromethane (ug/L) (well 1) (well 2)	Aug 12, 2020 (next due 2025)	ND ND				
Bromoform (well 1) (well 2)	Aug 12, 2020 (next due 2025)	ND ND				
Chloroform (Trichloromethane) (well 1) (well 2)	Aug 12, 2020 (next due 2025)	ND ND				
Dibromochloromethane (well 1) (well 2)	Aug 12, 2020 (next due 2025)	ND ND				
(THM'STTHM) (well 1) (well 2)	Aug 12, 2020 (next due 2025)	ND ND		80		
Benzene (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND		1	0.15	Discharge from plastics, dyes and nylon factories; leaching from gas storage tanks and landfills

Consumer Confidence Report

Carbon tetrachloride (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	0.5 (500)	100	Discharge from chemical plants and other industrial activities
1,2-Dichlorobenzene (o- DCB) (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	600	600	Discharge from industrial chemical factories
1,4-Dichlorobenzene (p- DCB) (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	5	6	Discharge from industrial chemical factories
1,1-Dichloroethane (1,1- DCA) (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	5	3	Extraction and degreasing solvent; used in the manufacture of pharmaceuticals, stone, clay, and glass products; fumigant
1,2-Dichloroethane (1,2- DCA) (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	0.5 (500)	400	Discharge from industrial chemical factories
1,1-Dichloroethylene (1,1- DCE) (ug/L) (well 1&2)	May 14, 2019 (next due 2025)	ND	6	10	Discharge from industrial chemical factories
cis-1,2-Dichloroethylene (ug/L) (well 1&2)	May 14, 2019 (next due 2025)	ND	6	100	Discharge from industrial chemical factories; major biodegradation byproduct of TCE and PCE groundwater contamination
trans-1,2-Dichloroethylene (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	10	60	Discharge from industrial chemical factories; major biodegradation byproduct of TCE and PCE groundwater contamination
Dichloromethane (Methylene Chloride) (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	5	4	Discharge from pharmaceutical and chemical factories; insecticide
1,2-Dichloropropane (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	5	0.5	Discharge from industrial chemical factories; primary component of some fumigants
Total 1,3-Dichloropropene (ug/L) (well 1&2)	May 22, 2019 (next due 2025)	ND	0.5 (500)	200	Runoff/leaching from nematocide used on croplands
Ethyl Benzene (ug/L) (well 1) (well 2)	May 14, 2019 (next due 2025)	ND ND	300	300	Discharge from petroleum refineries; industrial chemical factories
Monochlorobenzene (ug/L) (well 1&2)	May 14, 2019 (next due 2025)	ND	70	70.	Discharge from industrial and agricultural chemical factories and drycleaning facilities
Styrene (well 1&2)	May 14, 2019 (next due 2025)	ND	100	0.5	Discharge from rubber and plastic factories; leaching from landfills

1,1,2,2- Tetrachloroethane (well 1&2)	May 14, 2019 (next due 2025)	ND	1	0.5	Discharge from industrial and agricultural chemical factories; solvent used in production of TCE, pesticides, varnish and lacouers
Tetrachloroethylene (PCE) (well 1&2)	May 14, 2019 (next due 2025)	ND	5	0.5	Discharge from factories, dry cleaners, and auto shops (metal degreaser)
Toluene (well 1&2)	May 14, 2019 (next due 2025)	ND	150	0.5	Discharge from petroleum and chemical factories; underground gas tank leaks
1,2,4-Trichlorobenzene (well 1&2)	May 14, 2019 (next due 2025)	ND	5	0.5	Discharge from textile- finishing factories
1,1,1-Trichloroethane (1,1,1-TCA) (well 1&2)	May 14, 2019 (next due 2025)	ND	200	0.5	Discharge from metal degreasing sites and other factories; manufacture of food wrappings
1,1,2-Trichloroethane (1,1,1-TCA) (well 1&2)	May 14, 2019 (next due 2025)	ND	5	0.5	Discharge from industrial chemical factories
Trichloroethylene (TCE) (well 1&2)	May 14, 2019 (next due 2025)	ND	5	0.5	Discharge from metal degreasing sites and other factories
Trichlorofluoromethane (Freon 11) (well 1&2)	May 14, 2019 (next due 2025)	ND	150	5	
Trichlorotrifluoroethane (Freon 113) (well 1&2)	May 14, 2019 (next due 2025)	ND	1200	10	
Vinyl chloride (well 1&2)	May 14, 2019 (next due 2025)	ND	0.5	0.5	Leaching from PVC piping; discharge from plastics factories; biodegradation byproduct of TCE and PCE groundwater contamination
m,p-Xylenes (well 1&2)	May 14, 2019 (next due 2025)	ND	1750	0.5	Discharge from petroleum and chemical factories; fuel solvent
o-Xylene (well 1&2)	May 14, 2019 (next due 2025)	ND	1750	0.5	Discharge from petroleum and chemical factories; fuel solvent
Total Xylenes (m,p & o) (well 1&2)	May 14, 2019 (next due 2025)	ND	1750	0.5	Discharge from petroleum and chemical factories; fuel solvent
Methyl tert-Butyl Ether (MTBE) (well 1&2)	May 14, 2019 (next due 2025)	ND	13	3.0	Leaking underground storage tanks; discharges from petroleum and chemical factories

cis-1,3-Dichloropropene (well 1&2)	May 14, 2019 (next due 2025)	ND		0.5	0.5	Discharge from industrial chemical factories; minor biodegradation byproduct of TCE and PCE groundwater contamination
trans-1,3-Dichloropropene (well 1&2)	May 14, 2019 (next due 2025)	ND		0.5	0.5	Discharge from industrial chemical factories; minor biodegradation byproduct of TCE and PCE groundwater contamination
	UN	REGULATE	O ORGANICS CH	EMICALS		
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Bromobenzene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
Bromochloromethane (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	one of the total trihalomethanes (TTHMs), is formed when chlorine or other disinfectants are used to treat surface water.
Bromomethane (Methyl Bromide) (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
n-Butylbenzene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
sec-Butylbenzene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
tert-Butylbenzene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
Chloroethane (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	found in common household products such as paints, solvents, air fresheners, and deodorant spray
Chloromethane (Methyl Chloride) (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	found in common household products such as paints, solvents, air fresheners, and deodorant spray
2-Chlorotoluene A-008 (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
4-Chlorotoluene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
Dibromomethane (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
1,3-Dichlorobenzene (m- DCB) (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
Dichlorodifluoromethane (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	
1,3-Dichloropropane (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	Runoff/leaching from nematocide used on croplands
2,2-Dichloropropane (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	Runoff/leaching from nematocide used on croplands

1,1-Dichloropropene (well 1&2)	May 14, 2019 (next due 2025)	ND			0.5	Runoff/leaching from nematocide used on croplands		
Hexachlorobutadiene	May 14, 2019							
(well 1&2)	(next due 2025)	ND			0.5			
Isopropylbenzene	May 14, 2019							
(Cumene) (well 1&2)	(next due 2025)	ND			0.5			
p-Isopropyltoluene	May 14, 2019							
(well 1&2)	(next due 2025)	ND			0.5			
Naphthalene	May 14, 2019							
(well 1&2)	(next due 2025)	ND			0.5			
n-Propylbenzene	May 14, 2019							
(well 1&2)	(next due 2025)	ND			0.5			
1,1,1,2-Tetrachloroethane	May 14, 2019					Discharge from metal		
(well 1&2)	(next due 2025)	ND			0.5	degreasing sites and		
						other factories;		
						manufacture of food		
10000111						wrappings		
1,2,3-Trichlorobenzene	May 14, 2019				0.5	Discharge from textile-		
(well 1&2)	(next due 2025)	ND			0.5	finishing factories		
1,2,4-Trimethylbenzene	May 14, 2019				0.5	Discharge from textile-		
(well 1&2)	(next due 2025)	ND			0.5	finishing factories		
1,3,5-Trimethylbenzene	May 14, 2019					Discharge from textile-		
(well 1&2)	(next due 2025)	ND			0.5	finishing factories		
ADDITIONAL ORGANICS CHEMICALS								
	A	DDITIONAL	UKGANICS CHE	MICALS				
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant		
Chemical or Constituent (and reporting units) Ethyl tert-Butyl Ether	Sample Date May 14, 2019	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant		
Chemical or Constituent (and reporting units) Ethyl tert-Butyl Ether (ETBE)	Sample Date May 14, 2019	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant		
Chemical or Constituent (and reporting units) Ethyl tert-Butyl Ether (ETBE) (well 1&2)	Sample Date May 14, 2019	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG] 3	Typical Source of Contaminant		
Chemical or Constituent (and reporting units) Ethyl tert-Butyl Ether (ETBE) (well 1&2) Tert-amyl-methyl Ether	Sample Date May 14, 2019 May 14, 2019	Level Detected ND	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG] 3	Typical Source of Contaminant		
Chemical or Constituent (and reporting units) Ethyl tert-Butyl Ether (ETBE) (well 1&2) Tert-amyl-methyl Ether (TAME)	Sample Date May 14, 2019 May 14, 2019	ND	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG] 3 3	Typical Source of Contaminant		
Chemical or Constituent (and reporting units) Ethyl tert-Butyl Ether (ETBE) (well 1&2) Tert-amyl-methyl Ether (TAME) (well 1&2)	Sample Date May 14, 2019 May 14, 2019	Level Detected ND ND	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG] 3 3	Typical Source of Contaminant		
Chemical or Constituent (and reporting units) Ethyl tert-Butyl Ether (ETBE) (well 1&2) Tert-amyl-methyl Ether (TAME) (well 1&2) Diisopropyl Ether (DIPE) (well 1&2)	Sample Date May 14, 2019 May 14, 2019 May 14, 2019 May 14, 2019	ND	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG] 3 3	Typical Source of Contaminant		
Chemical or Constituent (and reporting units) Ethyl tert-Butyl Ether (ETBE) (well 1&2) Tert-amyl-methyl Ether (TAME) (well 1&2) Diisopropyl Ether (DIPE) (well 1&2)	Sample Date May 14, 2019 May 14, 2019 May 14, 2019 May 14, 2019	Image: Definition of the second se	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG] 3 3 3	Typical Source of Contaminant		
Chemical or Constituent (and reporting units) Ethyl tert-Butyl Ether (ETBE) (well 1&2) Tert-amyl-methyl Ether (TAME) (well 1&2) Diisopropyl Ether (DIPE) (well 1&2)	Sample Date May 14, 2019 May 14, 2019 May 14, 2019 May 14, 2019	Image: Applitude content Level Detected ND ND ND	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG] 3 3 3	Typical Source of Contaminant		
Chemical or Constituent (and reporting units) Ethyl tert-Butyl Ether (ETBE) (well 1&2) Tert-amyl-methyl Ether (TAME) (well 1&2) Diisopropyl Ether (DIPE) (well 1&2)	Sample Date May 14, 2019 May 14, 2019 May 14, 2019 May 14, 2019	Image: Applitude of the second sec	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG] 3 3 3	Typical Source of Contaminant		

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Iron (Untreated) (well #1) (ug/L) (well #2)	May 14, 2019	950 1250	1400	300²ug/L	none	Leaching from natural deposits; industrial wastes
Manganese (Untreated) (well #1) (ug/L) (well #2)	May 14, 2019	280 226	391	50²ug/L	none	Leaching from natural deposits
Iron (treated) (well #1 & 2) (ug/L)	May 14, 2019	220		300²ug/L		Leaching from natural deposits; industrial wastes
Iron (treated) (well #1 & 2) (ug/L)	Oct 16, 2019	30		300²ug/L		Leaching from natural deposits; industrial wastes
Iron (treated) (well #1 &2) (ug/L)	May 6, 2020	50		300²ug/L		Leaching from natural deposits

Consumer Confidence Report

Iron (treated) (well #1 &2) (ug/L)	May 12, 2021	ND		300²ug/L	Leaching from natural deposits
Manganese (treated)	May 14, 2019	10		500 J	Leaching from natural
(well #1 &2) (ug/L) Manganasa (treated)	Oct 16, 2010	40		50 ² ug/L	deposits
(well #1 & 2) (ug/L)	00110, 2019	40		50 ² ug/L	deposits
Manganese (treated)	May 6, 2020			Ŭ	Leaching from natural
(well #1 & 2) (ug/L)		120		50²ug/L	deposits
Manganese (treated)	May 12, 2021	20		502ug/I	Leaching from natural
(well #1 & 2) (ug/L)		20		JO ug/L	
Chloride (well#1)	May 2, 2017	7ppm	10.5	500ppm	Runoff/leaching from
(well#2) (Due next 2026)		20ppm	13.5		natural deposits; seawater
Sulfate (SOA) (well#1)	May 2, 2017	87 7ppm	88.7	500ppm	Bunoff/leaching from
(well#2)	Way 2, 2017	87.7ppm 89.7ppm	00.7	Sooppin	natural deposits: industrial
(Due next 2026)		The second secon			wastes
Specific Conductance	May 2, 2017	503		1600	Substances that form ions
(E.C.) μ S/cm (well#1) (Due next 2026)					influence
Specific Conductance	May 2, 2017	410		1600	Substances that form ions
(E.C.) µS/cm (well#2)					when in water; seawater
(Due next 2026) Foaming Agents (MBAS)	May 2, 2017	ND		500pph	Influence Municipal and industrial
(well#1&2)	Way 2, 2017	ND		500pp0	waste discharges
(Due next 2026)					
Copper (well#1&2)	May 2, 2017	ND		1.0ppm	Internal corrosion of
(Due next 2026)					systems: erosion of natural
					deposits; leaching from
	12 2020			(0)	wood preservatives
Haloacetic (five) (HAA5)	Aug 12, 2020	10		60	disinfection
(Due next 2025)	May 14, 2019	NID		100	
Silver	Widy 14, 2017	ND		100	Industrial discharges
(Due next 2028)					Discharge from industrial
					and agricultural chemical
1,2,3-Trichloropropane	Feb 15,				factories; leaching from
Well #1 (ug/L)	2018	ND	ND	0.005	hazardous waste sites; used
(Due next 2021)					solvent, paint and varnish
``´´´					remover, and cleaning and
					degreasing agent; byproduct
					other compounds and
					pesticides.
					Discharge from industrial
1 2 3-Trichloropropage					and agricultural chemical factories: leaching from
Well #1 (ug/L)	May 01, 2018	ND	ND	0.005	hazardous waste sites; used
Well #2					as cleaning and maintenance
(Due next 2021)					solvent, paint and varnish remover and cleaning and
					degreasing agent; byproduct
					during the production of
					other compounds and
					Discharge from industrial
					and agricultural chemical
1,2,3-Trichloropropane	Aug 07, 2018	ND	ND	0.005	factories; leaching from
Well #1 (ug/L) Well #2		ND	ND	0.005	as cleaning and maintenance

(Due next 2021)					solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides. Discharge from industrial
1,2,3-Trichloropropane Well #1 (ug/L) Well #2 (Due next 2021)	Nov 06,2018	ND	ND	0.005	and agricultural chemical factories; leaching from hazardous waste sites; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides.
Zinc (well#1&2) (Due next 2026)	May 2, 2017	ND		5.0	Runoff/leaching from natural deposits; industrial wastes

Table 6. Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects Language
None					

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [Enter Water System's Name] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Additional Special Language for Nitrate, Arsenic, Lead, Radon, and *Cryptosporidium*: [Enter Additional Information Described in Instructions for SWS CCR Document]

Federal Revised Total Coliform Rule (RTCR): [Enter Additional Information Described in Instructions for SWS CCR Document]

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
None				

Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement

For Water Systems Providing Groundwater as a Source of Drinking Water

Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples

Microbiological Contaminants (complete if fecal- indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	(In the year) 0	[Enter Dates]	0	(0)	Human and animal fecal waste
Enterococci	(In the year) 0	[Enter Dates]	TT	N/A	Human and animal fecal waste
Coliphage	(In the year) 0	[Enter Dates]	TT	N/A	Human and animal fecal waste

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Violation of a Groundwater TT

Special Notice of Fecal Indicator-Positive Groundwater Source Sample: [Enter Special Notice of Fecal Indicator-Positive Groundwater Source Sample]

Special Notice for Uncorrected Significant Deficiencies: [Enter Special Notice for Uncorrected Significant Deficiencies]

Table 9. Violation of Groundwater TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
None				

For Systems Providing Surface Water as a Source of Drinking Water

Table 10.	Sampling I	Results Showing	Freatment of	Surface Wa	ater Sources

Treatment Technique ^(a) (Type of approved filtration technology used)	N/A
Turbidity Performance Standards ^(b)	Turbidity of the filtered water must:
(that must be met through the water treatment process)	1 – Be less than or equal to [Enter Turbidity Performance Standard to Be Less Than or Equal to 95% of Measurements in a Month] NTU in 95% of measurements in a month.
	2 – Not exceed [Enter Turbidity Performance Standard Not to Be Exceeded for More Than Eight Consecutive Hours] NTU for more than eight consecutive hours.
	3 – Not exceed [Enter Turbidity Performance Standard Not to Be Exceeded at Any Time] NTU at any time.
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	N/A
Highest single turbidity measurement during the year	N/A
Number of violations of any surface water treatment requirements	N/A

(a) A required process intended to reduce the level of a contaminant in drinking water.

(b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

Summary Information for Violation of a Surface Water TT

Table 11. Violation of Surface Water TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
N/A				

Summary Information for Operating Under a Variance or Exemption

N/A

Summary Information for Federal Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements

Level 1 or Level 2 Assessment Requirement not Due to an E. coli MCL Violation

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system

Level 2 Assessment Requirement Due to an E. coli MCL Violation

E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely-compromised immune systems.